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Abstract

In this paper, we analyze Difference of Convex Neoral Networks in the con-
text of one-dimensional nonlinear regression. Spectfically, we show the surpris-
ing ability of the Difference of Convex Mulolayer Perceptron (DC-MLE) w avoid
owverhitting tn nonlinear regression. (Otherwise sad, DC-MLPs self-regulanze (dio
not require addinonal regularizaton echmigues). Thus, DO-MLPs could result
very uselful for praciical purposes based on one-dimensional nonlinear regression.
[t turns out that shallow MLPs with o conves activation {Rel .U, softplus, ete.) fall
i the class of DO-MLPs. On the other hand, we call S0-MLFP the shallow MLEP
with a Sguashing activation (logisic, hyperbolic tangent, cic.). In the numencal
experiments, we show that DC-MLPs used for nonlinear regression avoid overfit-
timg, in contrast with S0-MLPs. We also compare DC-MLPs and S0-MLPs from
a theoretical point of view.

Keywords: DO nevral network, multilayer perceptron, nonlinear regression,
overhitting.

1. Introductisn

Mewral Networks (MNs) have proven great success inthe Al held, ranging
from Natural Language Processing tasks, as speech recogmition [1, 2] and lan-
ouage representation and understanding (3, 4], to Computer Vision problems as
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image classification and recognition [5, 6], image generation [7] and other tasks
such as forecasting regression problems [8, 9].

As universal approximators [10, 11], NNs have shown particularly good gen-
eralization properties in high dimensional data, tackling and overcoming -to some
extent-, the well-known curse of dimensionality problem coined by Richard Bell-
man in 1966 [12]. One major drawback, in practice, is that highly parameterized
neural networks (neural networks with high capacity) are prone to overfit the train-
ing data, performing poorly in test examples. Recently and contrary to previous
assumptions, new findings have revealed that increasing the number of param-
eters in neural networks can actually improve their generalization performance.
This phenomenon, known as double-descent [13], suggests that the increase in
parameter count induces a form of regularization in the solution. This explana-
tion partially accounts for the improved performance observed in the presence of
a larger number of parameters. These results encourage further studies on how
neural networks actually behave and how to induce more regularizing properties.
Training such networks is usually performed through gradient-based optimization
methods, leading to suboptimal results (local minima) given that, in this context,
loss functions are nonconvex [14, 15].

Convexity in neural networks has been a topic of interest since the beginning
of the deep learning era [16]. In this context, convexity typically refers to the con-
vexity analysis of the loss function (w.r.t. the training parameters). Recently, the
convexity of NNs w.r.t. the input variables have also been studied under the name
Input Convex Neural Networks (ICNN) [17]. Although ICNNs have interesting
properties, they can only be used to learn convex functions. That is, the convexity
assumption greatly limits the model’s capacity. Thus, in order to learn nonconvex
functions, ICNNs have to be combined with other tools. For example, in [18] the
CIFAR-100 classification problem, a nonconvex problem, is tackled by an ensem-
ble of ICNNs combined with an auxiliary shallow MLP (a nonconvex function
w.r.t. the input variables).

Also in the context of convexity, [19] takes a step forward by proposing the
Convex Difference Neural Networks (CDiNN). Specifically, CDiNN are neural
networks which can be decomposed as the Difference of two Convex functions
(DC). It is well known that DC functions can approximate, to a given numerical
tolerance, virtually any function (convex or nonconvex) [20]. Therefore, CDiNNss,
on the one hand, can learn virtually any function, in contrast to ICNNs, and on
the other hand, have a convexity-based structure as a DC function. CDiNNs were
introduced in [19] as a new NN architecture mainly for efficient decision-making
without significant loss of representational capability. More specifically, these
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authors applied DC optimization algorithms [21] to decision-making involving
NNss.

In contrast to [19], we apply CDiNNs for nonlinear regression. Nonlinear re-
gression problems can be solved by different machine learning approaches such
as neural networks, support vector regression (SVR), decision trees and random
forest. Usually, one uses the corresponding state of the art software, as for ex-
ample, the popular XGBoost [22], an open-source library which implements a
decision-tree based ensemble algorithm that uses a gradient boosting framework.
Such approaches are used in a wide range of applications, as for example, fault
diagnosis [23], time series forecasting [24] or biomedical signal estimation [25].

In this paper we focus on nonlinear regression based on NNs [26]. An overview
of regression algorithms, among them the NN approach, can be found in [27]. In
order to improve the effectiveness of nonlinear regression based on NN, different
aspects have been studied. For example: a) The estimation of the regularization
term used to avoid overfitting in the training process can be found in [28]. b)
The robustness of NN in regression tasks is improved in [29], where a prediction
interval and a point prediction are simultaneously generated by means of a deep
NN. c¢) Another example corresponds to building an explicit expression for the
coefficients of a polynomial regression from the weights of a given NN, using a
Taylor expansion approach [30], etc.

The gap between theory and practice in deep learning is narrowing in recent
years. Thus, for example, [31] studies deep learning through the prism of interpo-
lation in order to get closer to a general theory of deep learning. In this context, we
aim at shedding light upon the surprising ability of CDiNNs to avoid overfitting
in nonlinear regression, despite the fact that they remain universal approxima-
tors [19]. To this end, we restrict ourselves to DC shallow Multilayer Perceptron
(DC-MLP) architectures as one-dimensional nonlinear regression functions. We
analyze their properties, with a special focus on the derivative w.r.t. the input vari-
able. Roughly speaking, DC-MLPs show low derivative values w.r.t. the input
variable which is typical, as is shown in this work, in functions without overfitting
(see Fig. 2). This will play a similar role to common regularization techniques
such as weight-decay (Lo-regularization) or dropout [32], among others.

However, some fields, as in Physics or Control Theory, require more than
a straightforward implementation of a NN to get some of their advantages. In
particular, the derivative of the NN w.r.t. the input is crucial to characterize the
system. For instance, in Physics Informed Neural Networks (PINNs) [33], neural
networks are adapted to provide control over the first order derivatives in order
to match the physical constrains. In [34], the authors exploit sector-bounded and
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finite slope activation functions to provide stability guarantees for NNs approx-
imated controllers. Recently, residual skip connections [6] have been cast as a
discretized version of Neural ODEs [35], where the residual matches the deriva-
tive of the NN (layerwise).

Furthermore, the derivative —w.r.t. the input— is directly related to a whole
new subject of study, so-called adversarial examples [36, 37]. They exploit the
derivative of a NN to create examples that drastically flip the final prediction of the
network. As a consequence, NNs are called into doubt in terms of explainability-
interpretability and generalization. Regardless their motivation, the analysis of
the derivative of NN is gaining momentum; reason why, in this paper, we opt to
focus on the nonlinear regression problem to analyze and compare DC-MLPs and
SQ-MLPs (Squashing Multilayer Perceptrons) through their derivatives.

The contribution of this paper is twofold:

a) From an empirical point of view we show that DC-MLPs, used for one-
dimensional nonlinear regression, avoid overfitting in contrast with SQ-
MLPs (see Fig. 1). Furthermore, the overfitting level of SQ-MLPs results
directly proportional to: the number of neurons, the number of training it-
erations and the magnitude of the data noise. However, it decreases as the
number of data points increases.

b) From a theoretical point of view we prove: i) That the derivative of the recti-
fied MLP, the typical DC-MLP, has a moderate variation. ii) That the deriva-
tive of the logistic MLP, the typical SQ-MLP, is potentially unbounded. iii)
That overfitting regression functions have a potentially unbounded deriva-
tive. These theoretical results would explain, at least partially, the empirical
results in a).

This paper is organized as follows. Section 2 is devoted to analyze the deriva-
tive of one-dimensional nonlinear regression functions: The general case is stud-
ied in Section 2.1, the logistic MLP case in Section 2.2 and the rectified MLP
case in Section 2.4. In Section 3 we develop an exhaustive experimental study,
focusing on the surprising ability of DC-MLPs to avoid overfitting in nonlinear
regression: Section 3.1 presents a set of experiments, based on synthetic data,
to compare the effect of parameter setting and data characteristics on the perfor-
mance of DC-MLPs versus SQ-MLPs. In Section 3.2 we carry out an additional
set of experiments based on real-world data. Finally, Section 4 summarizes the
main conclusions obtained from this research work.
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Figure 1: DC-MLPs, used for one-dimensional nonlinear regression, avoid overfitting in contrast
with SQ-MLPs.

2. One-dimensional nonlinear regression
Let us consider the following one-dimensional statistical model:
VO = gzD) 49 O~ N(0,62), forallie T={1,....1}, (1)

where g(z) : R — R is an unknown nonlinear continuous function, Y@ is the
response or dependent random variable, z(*) is the independent variable and £
is the error, which is assumed to be a normal random variable for all € Z. The
objective of nonlinear regression is to approximate the unknown function g(z) by
means of a regression function, say f(x;0).

In order to approximate g(x) by f(x;#), one usually collects a sample o data
set:

D = {(‘r(l)7y(l))}zel— C RQv

which is used to find the best-fitting parameters #* by minimizing a given loss
function, say L(0), typically the mean squared error (MSE):

win L) = 7 37 (5 = (276" @
€L

In nonlinear regression, the solution of the MSE problem (2) is usually performed
by numerical optimization algorithms and the whole minimization process is often
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termed ‘training’ the regression function. Thus, the resulting regression function
to be used for practical purposes is f(x;¢*). Throughout this paper we make the
following assumptions:

Assumption 1. We assume noisy observations:
y(i) = g(i) + e foralli e T,

where for a compact notation we have defined ¢) = g(z\%)). Furthermore, the
errors {€W},cr are realizations of the independent random variables {€")};cz.
Consequently, y") is a realization of the random variable Y ~ N (g(i), a?), for
alli € 1.

Assumption 2. For any data set D in this paper, we assume that D = {(z, y) }icz,
and that

o0 < A=2W <@ <« <20 =B < 400

is a sequence of equidistant points, that divides the regression interval [A, B] into
I — 1 subintervals [z, 2] of length L = (B — A) /(I — 1).

Definition 1 (Shallow MLP). We define the shallow MLP as the following two-
layer MLP with one-dimensional input and output

f(z;0) = d—l—ch s(a;x + bj), 3)
JjeET
where J = {1,...,J} is the index set, § = (a;,b;,c;,d);es is the vector of

training parameters, s(-) is the nonlinear activation function of the hidden layer
and the identity is the activation function of the output layer.

If s(-) is the logistic activation, then we will call it a logistic shallow MLP or,
for short, a logistic MLP. Analogously, we define softplus MLP, rectified MLP,
etc.

Assumption 3. All the NNs considered in this paper correspond to shallow MLPs
(except in Appendix A, where we also consider deep MLPs).

Assumption 4. We denote by f'(x;0) the derivative of f with respect to the input
variable x. Furthermore, all the derivatives considered in this paper are respect
to x.



2.1. Overfitting regression functions have a potentially unbounded derivative

In this section we show that the derivative of overfitting regression functions
is potentially unbounded on regression intervals with large data sets as in Fig. 2
©).

Definition 2 (Overfitting regression function). Given 6, a fixed vector of regres-
sion parameters, we say that the regression function f(x;0%) is an overfitting func-
tion with tolerance ¢ > 0 for the data set D, if there exist | 1V |< ¢ such that

f(zD;6%) = y@ 44O foralli e T.

The previous definition corresponds to a ‘full’ overfitting function, where the
regression function ‘learns’ all the data points (Fig. 2 (A)). Although this concept
is useful for the theoretical analysis of the following sections, in applications one
usually faces ‘partial’ overfitting regression functions (Fig. 2 (B) and (C)). Also,
in Fig. 2 (C) we observe that the derivative of overfitting regression functions can
be very large when trained with large data sets, such that the corresponding graph

is zigzag-shaped in some sections.
The following lemma will be used to prove Proposition 1.

Lemma 1. Given a normal random variable X ~ N (ju,c?) then

—1—yu )
> .
Proof. TIf h(-) is the probability density function of X, then

B[1X1]= [ 1ol be)ds

—00

:/Imm h(:x)dx+/|$|>1|x| h(z)dz
2/|x|>1|x| ha)ds > /|x|>11h<x)dx

E[1X]] > 29

=P(|X[>1) = 2P(X<-1)
—1—p —1—p
=2P(Z < = 20
(7<= a2,
where Z ~ N (0, 1) and ®(-) is its probability distribution function. n

In the following proposition we see that the expectation of the derivative of
an overfitting function f(z;6;) is unbounded along the regression interval [A, B]
as I, the number of data points, increases (Fig. 1 (C)). Notice that f'(x;6;) is a
random variable since it depends on the realization of the data set D;.
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Figure 2: Regression functions can exhibit different levels of overfitting. (A) Full overfitting: The
regression function ‘learns’ all the data points. (B) Partial overfitting (mild). (C) Partial overfitting
(strong): The derivative of overfitting regression functions can be very large when trained with
large data sets. The corresponding graph is zigzag-shaped in some sections. (D) No overfitting:
The ideal regression function replicates the unknown function.



Proposition 1. If f(z; 0;) is an overﬁttlng regression function for Dy = {(x?), yy))}ig,

forall I > 2, then each subinterval (x 1 :cg o )) has a point tg) such that

Jim E[ | /(7.0 ] =+00  forallie T~ ={1,....1—1}.

Proof. This proof has four steps:
Step 1) Given any fixed [/ > 2, then by the mean-value Theorem 5.11 [38], there
exists £ € (2", 2{""™) such that

(i+1) (%)

TGN S— foralli € T -
NV
Ty 1

(@) (i+1)

Prior observing y;” and y; ', all we know about the data is summarized by the

random variables YI( " and YI(ZH). Thus prior observing y}i) and yyH)

write:

, one can

Y(’H'l) _ Y(i)

1040, S Y O . -
f(t7;0r) = G xgi) foralli € 7

Notice that f (t(z) 0;), being a function of the random variables Y(Hl) and Y[(Z ,
is also a random variable. This implies that

1+1 7
P oy = L =Y

i+1 i ’
|2y )|

Thus

E[ | }/[(H-l) _ Y}(i) | ]
Ly

E[ | (0] ] = foralli € T,

where L; = (b—a)/({ —1).
Step 2) Let us see the distribution of YI(HI) — Yf(z). By the hypothesis, we have
that

Y = gz 4 €D ~ N(g(z1"), 0?) foralli € Z.
Given that Yl(i) and YI(Hl) are independent normal random variables:

}/[(i+1) _ }/I(l) ~ N('ug)’ (O'EZ)) ) for alll S I _,



with i = g(2"") = g(2}”) and (01")? = 202,

Step 3) Let us see that lim;_,, IE[ | YI(HU — Y](i) | ] is lower bounded. By
Lemma 1 we have:

, _ —1—
E[V =y 1] > 2o(— 1)

91
Then
(+1) () —1— —1
lim E[ Y, =v;"|] > lim 20(——%) = 28(—=) = K.
I—+00 I—+o0 O-y) ov?2

where we have used that
: @) _ (+Dy _ @YY
IEI}:IOO o= IETOO (g(a7™) = 9(a")) =0,
since limy_, . | x&”” — x?) |= 0 and, by hypothesis, g is continuous.
Step 4) Let us compute the limit of the expected derivative

]E[ ’ YI(H—U _ Y[(i) ‘ }

. 174(1), — i
IET&E[ | (75 00) | } - Iginoo L;
— 1o forallieZ —,

since the limit of the numerator is lower bounded by K > 0 (Step 3) and the limit
of the denominator is 0. [

2.2. Logistic MLPs have a potentially unbounded derivative

The objective of this paper is to compare SQ-MLPs versus DC-MLPs, as
one-dimensional regression functions to asses their capacity to avoid overfitting.
Squashing MLPs correspond to shallow MLPs defined by equation (3) with an
activation function s(-) of type squashing (logistic, hyperbolic tangent, softsign,
etc.). We denote them SQ-MLPs. On the other hand, DC-MLPs will be introduced
in Section 2.3. One of the prototypical SQ-MLPs is the logistic MLP, which cor-
responds to the shallow MLP with a logistic activation, i.e.,

s(t) = o(t) = 1/ (1 + exp(—2)),

In this section we analyze the logistic MLP as a nonlinear regression function.
Notice that for simplicity this section focus on logistic MLPs, but in Section 3 we
will see that the performance obtained by other SQ-MLPs is very similar.

The following lemma will be used to prove Proposition 2.
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Lemma 2. Given any point * € R then:

0 if <=z
lim+a( =< 05 if z=12
a—0 (67 1 lf T > 7,

x—f)

where lim,,_.o+ denotes the right one-sided limit.

Proof. The proof is direct taking into account the definition of o (¢). n

In the context of NNs with one-dimensional input, [39] shows that the shal-
low MLP with logistic activation can potentially learn any continuous function
on a compact interval. In order to complement the previous result in the context
of nonlinear regression, next proposition shows that: a) The shallow MLP with
logistic activation can potentially suffer overfitting for any regression data set. b)
Furthermore, its derivative w.r.t the input variable is potentially unbounded on the
regression interval, as is the case of overfitting regression functions trained with
large data sets (see Proposition 1). In the experiments of Section 3 we will see
that logistic MLPs tend to produce overfitting.

Proposition 2. Let us consider the data set D = {(x9, y)};c1 and the logistic
MLP f(x;0) with J neurons (J = I). Then, for any ¢ > 0 and any M > 0 there
exist 0* = (a%, bt ¢, d*) and | v |< € such that:

1773070
a) fz:07) =y D +r0  forallie L @)
b) | f'(@507) |> M forallieT={i€T:c £0}. (5

Proof. This proof can be structured into three steps:

Step 1) In this step we see that there is a vector of parameters 67 that fulfills
statement a) for any given ¢ > 0. Let us consider the following coefficients pa-
rameterized by o« > 0 :

aj(a) = o forall j € J
bj(e) = —

cj(a) = ¢

d(a) =0,
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such that parameters ¢; fulfill the following system of linear equations (notice that
this system can be solved easily):

1,
(1) _ et

1
y® =+ 505

Y

1
y D =cit+c+... +=c,

2
that is,
, 1
y ="+ i€l (6)
j<i
In this case we can define §(t) = (a;(a), bj(e), ¢;(a), d(c) )jej such that
— 2@
., T —x
- Z Go(——). @)
JjeJT

Notice that f(z;6(«)), as a function of «, is a continuous function for any « > 0
since it is a linear combination of (continuous) logistic functions. Then, given any
fixed (Y from the data set we have

(i) _ 40)
i OB _ (—2—
Jim, £ 0(@)) = lim Do
7<i
() — )
l’ z\
1
+lim. > ol

()

(@ _
4+ lim Zc;a(%)

a—0t+ —
]>1,
—Zc =+ c +0 (by Lemma 2)
1<t
= y@, (by equation (6))

Therefore, given that f(x;6(«)) as a function of « is continuous, then for any
¢ > 0 there exists 0; > 0 such that for all o} € (0, d;) we have that

| y @ — f(x(i);«%‘) |< ¢ forall: € Z,
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where 07 = 0(a7).

Step 2) In this step we see that there is a vector of parameters ¢; that fulfills
statement b) for any given M > 0. First, let us compute the derivative of f(x;0)
defined by equation (7). Given that o’(-) = o(-) — o(+)* we have:

I Zc jU_ac(])) _U(QU_CC(J'))Q)‘

(0%
]EJ

Second, let us compute the following limit for any fixed z()

; (@) - - _
g F500) = lip 25 oy~ )
JjeJ
where ' ,
2 — 40G)
Jij =0 T )

That limit can be decomposed as follows
.1
JL%LE(;C‘ o —0}) +ZC (03 — 3 +z>:c oijl = W)
J<t 7>

The limit of the numerator can be computed as follows:

lim (Zc;‘ (0ij —U%)—FZC}T (0ij — U +Zc (04 — zj)

a—0t — —

J<t J=t j>i
11

:o+ci(§—1)+0 (by Lemma 2)

_ G

=

Thus
o —oo if ¢ <0

lim f(z®:0(a))= lim ——~=¢{ 0 if ¢ =0
i ST = B 7y o

+oo if ¢ > 0.

Therefore, for any M > 0 there exists d, > 0 such that for all o} € (0,d2) we
have

| £ 05) |> M foralli € Z,
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where 05 = 0(a3).

Step 3) To finish the prove, let us see that we can take a common 6* that fulfills
statements a) and b) simultaneously, for any given ¢ > 0 and M > 0. It is enough
to take 6 = min{dy,d2}, where 0; and J, have been defined in steps 1) and 2),
respectively. In this case, equations (4) and (5) are fulfilled simultaneously for
any a* € (0, 6). Therefore one can take 0* = 6(a*). n

2.3. Difference of convex shallow MLPs

Difference of Convex (DC) neural networks were introduced in [19] as a new
NN architecture mainly for efficient decision making without significant loss of
representational capability. More specifically these authors applied DC optimiza-
tion techniques to decision making involving NNs. In contrast to [19], we use DC
neural networks to avoid overfitting in nonlinear regression. We restrict ourselves
to the case of DC shallow MLPs which we call DC-MLPs and define as follows.

Definition 3 (DC-MLP). Given the shallow MLP

fla:0) =d+> ¢ slajx+by),

JjeET
we say that it is a DC-MLP if it can be decomposed as follows:
f(x;0) = fi(z;01) + fa(x;00)
d
fl(av; (91) = 5 + Z Cj S(GjLU + bj)

JET
d
fa(w;02) = 5 + > e s(ae+b)),
JET2

where J = Jy U Js is a partition of the index set, fi(x;01) and fo(x;05) are
convex and concave functions of x, respectively, and 0 = (01,0y) with ¢; =
(a5, b5, ¢j, d)jeg, and 0 = (a;, by, ¢j, d)je g,

Notice that the DC-MLP is the simplest version of the CDiNN (Convex Dif-
ference Neural Network) defined in [19], since CDiNNs can be arbitrarily deep
with multidimensional input and output.

In Proposition 3 we show that DC-MLPs are DC functions [20]. In Proposition
4 we prove that any shallow MLP with convex activation is a DC-MLP. Finally, in
Section 2.4 we analyze the derivative of the rectified MLP, one of the prototypical
DC-MLPs.
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Proposition 3. If f(z;60) is a DC-MLP, then it is a DC function on R.

Proof. 1t is enough to write f(2;60) = fi(z;61) — ( — f2(2;62)) to show that
f(z;0) can be expressed as the difference of two convex functions on z, for all
x € R. [

Proposition 4. If f(x;0) is a shallow MLP with a nonlinear activation function
which is convex (softplus, ReLU, leaky ReLU, ELU, etc.), then it is a DC-MLP.

Proof. Ttisenoughtotake 3 ={j € J|¢; >0}and Job ={j € J | ¢; <0} to
fulfill definition 3. In this case

fil@;0) =5+ > ¢ slaa+by)

JET

d
2

is a convex function of x since it is an affine combination of convex functions
with positive weights ¢; (notice that s(a;z + b;) is convex for all j € J; [40]).
Furthermore, it can be seen in the same way that fo(x; f2), defined analogously, is
a concave function of x. n

From the previous proposition, there exist different ways to implement DC-
MLPs. As an example, we provide a minimal pseudo-code implementing a DC-
MLP using PyTorch [41] in Appendix A.

2.4. Rectified MLPs have a derivative with moderate variation

As already pointed out, we aim to asses the capacity of SQ-MLPs and DC-
MLPs to avoid overfitting in one-dimensional nonlinear regression. One of the
prototypical DC-MLPs is the rectified MLP, which corresponds to the shallow
MLP defined by equation (3) with a rectified activation, i.e.,

s(t) = ReLU(t) = max{0,t}.

In this section we analyze the derivative of the rectified MLP. Notice that for

simplicity this section focus on rectified MLPs, but in Section 3 we will see that

the performance obtained by other DC-MLPs (ELU, softplus, ) is very similar.
The following lemma will be used to prove Proposition 5.

Lemma 3. Consider the regression interval [A, B], and the functions:

¢1(x) = ReLU(ax + b) with a < 0
po(r) = ReLU(—ax — b) — ReLU(—ax + aA) + p1(A),

where we assume that o1 (x) is not constantly zero in [A, B]. Then ¢1(x) = po(x)

forall x € [A, B].
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Proof. Given that a < 0, then

(z) = ar+b if < -b/a
PIE) = 0 if x>-b/a.

Therefore, it is clear that if () is not constantly zero in [A, B], then —b/a > A.
To proof this lemma, we distinguish two cases.

Case I: A < —b/a < B. In this case is is enough to see that ¢;(z) = pa(z)
forz = A, —b/a, B. On the one hand:

©1(A) =aA+D
pr(=b/a) =

On the other hand:

@o(A) = ReLU(—aA — b) — ReLU(—aA + aA) + ¢1(A)
=0—0+aA+b
p2(—b/a) = ReLU( — a(—b/a) —b) — ReLU( — a(—b/a) + aA) + p1(A)
=0—@1(A) +¢1(4) =0
¢2(B) = ReLU(—aB — b) — ReLU(—aB + aA) + ¢, (A)
= (—aB —b) — (—aB + aA) + (aA+b) = 0.

Case 2: —b/a > B. In this case is is enough to see that p;(z) = ¢o(x) for
x = A, B. On the one hand:

©1(A) =aA+D
v1(B) =aB +b.

On the other hand:

@a(A) = ReLU(—aA —b) — ReLU(—aA + aA) + ¢1(A)
=0-0+ad+b

¢2(B) = ReLU(—aB — b) — ReLU(—aB + aA) + ¢, (A)
=0— (—aB+aA)+ (aA+b) =aB +b.

]
In this section, we can assume that all the inner slopes {a;} of any rectified
MLP are strictly positive, by the following proposition.
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Proposition 5. Consider the rectified MLP f,(x,0,) defined on the regression in-
terval [A, B|. Then, there exists a rectified MLP fo(x; 02) with 05 = ( aj, b, c;, d)
and a; > 0 for all j € J such that fy(xz,05) = fi(x,6,) forall x € [A, B].

JjeET

Proof. According Lemma 3, any rectified term in f;, say ¢1(z) = ReLU (a;x +
b;) with a; < 0, can be replaced by the following equivalent function on [A, B] :

(pg(l’) = ReLU(—Zijx - b]) - RGLU(-&jI + 5]A) + (,01(14),

with strictly positive inner slopes —a;. Thus, one can obtain f; by two steps.
Step 1: In f;, replace any rectified term with negative inner slope, say i, by
the corresponding ¢». Step 2: Rearrange the resulting terms into a rectified MLP,
which will have strictly positive inner slopes. [

It is well known that the function ReLU (a; = + b;) is derivable at any point,
but at its vertex —b;/a;. This vertex can be used to define ReLU (a; x + b;) as
follows:

| N if v < —bj/a;
ReLU(ajl’+bj)_{ ajl’+bj ifl‘>_bj/aja

where we are assuming a; > 0.

Assumption 5. For any rectified MLP f(x;0) we consider its corresponding set of
vertices V= {—bj/a;}cs. Without loss of generality, in this section we assume
that V' is an ordered set such that

—by  —bo —b
2o <
ay a9 aj

and that a; > 0 forall j € J.

In [39] it is shown that, in the case of one-dimensional input, the rectified
MLP can potentially learn any continuous function on a compact interval. In
order to complement the previous result, Proposition 6 computes the derivative of
any rectified MLP. Furthermore, in Corollary 1 it is proved that rectified MLPs
have a derivative with moderate variation (in contrast with logistic MLPs). In the
experiments of Section 3 we will see that rectified MLPs and the other DC-MLPs,
used in nonlinear regression, learn functions whose derivative shows moderate
variation, in line with Corollary 1.
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Proposition 6. Let f(x;0) be a rectified MLP with a; > 0 for all j € J defined
on the regression interval [A, B|, and V' its corresponding set of ordered vertices.

Ifzy € [A,B]\'V, then

f(x1;0) = Zajcj (8)

JET
where Jy = {j € J | x1 > —b;/a;}.
Proof. First, let us recall the derivative of ReLU (t) :

0 ift <0
ReLU'(t)=H(t) =<} 1 ift >0
undefined if¢t =0,

where H (t) is the so-called Heaviside function [39].
Second, we partition 7 into J; = {j € J | 1 > —b;/a;} and T = {j €
J | r1 < —bj/aj}.

Third, let us compute the derivative of f(z;6*) at z; :

f(x1;0) = ch ReLU'(a; x1 + b;)
JjeT
= Z Cj (le(Clj r1 + bj)
JjeT
= Z Cj (le((lj r1 + b]) + Z Cj (le(Clj r1 + bj)
JjeET JET2

= E Clj Cj.

JET

u

The following corollary shows that rectified MLPs have a derivative which

tend to show moderate variation for close points. More specifically, if two points

are in the same vertex interval (vi_1, vy), then their derivatives are equal (state-

ment a)). If two points are in consecutive vertex intervals, then their derivatives,

in general, tend to be similar in cases where the products a;c; are of similar mag-
nitude for all 7 € J (statement b)).

Corollary 1. Let f(x;0) be a rectified MLP with a; > 0 for all j € J defined on
the regression interval [A, B, and V' = {vy }rez its corresponding set of ordered
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vertices, where v, = —by/ay.

o "(x9;0
a)If x1,x9 € (vg_1,vk), with f'(x1;0) #0  then f’EIj;Q; =1.
b) If x1 € (vg—1,vx) and
Qg Ck

Ty € (g, Upp1), with f'(z1560) # 0 then

f'(x1;0) D o1 45 €
Proof. a)Ifz; € (vk_l, Vg, ) then, by Assumption 5 we have
V1 <V < .o < VU1 <21 <V <...0y,
and therefore, 7; = {1,..., k — 1}. Then by Proposition 6,
"(z1;6 Z a;c;.
For the same reason, f’(x9;0) = Zf Laje; = f'(x1;0).
b) In this case
(96 Z a;c;.
Thus
k
f(z2;0) Zj:l a; G4 Qg Ck,
- k-1
f(w;0) Zj:ll a; € D j-15¢
u

3. Numerical results

3.1. Experiments based on synthetic data

As already said, we call SQ-MLP the Multilayer Perceptron with a Squashing
activation (logistic, hyperbolic tangent, etc.) and one hidden layer. In this sec-
tion we compare SQ-MLPs versus DC-MLPs to asses their own capacity to avoid
overfitting in one-dimensional nonlinear regression. For this reason we compare
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these MLPs without any additional technique to prevent overfitting (Lo regular-
ization, early stopping, Dropout, etc.). The experiments of this section are based
on synthetic data, whereas experiments based on real-world data can be found
in Section 3.2. We use PyTorch 1.7.1 [41] to implement our code and conduct
our experiments on a processor Intel 17-10750H CPU at 2.60GHz with 16GB of
RAM. As we will see, the general conclusion of our experiments is that DC-MLPs
can avoid overfitting in contrast to SQ-MLPs. On top of that, in each experiment
we study other practical aspects that may affect the overfitting level, namely:

* Experiment 1: Number of data points.

* Experiment 2: Number of neurons.

» Experiment 3: Number of training iterations.

* Experiment 4: Magnitude of the data noise.

» Experiment 5: Probability distribution of the data noise.

* Experiment 6: Squashing versus convex activation functions.

In all of the experiments we consider the following statistical model
YO = g(z) 4 @ e ~ N(0,0%), foralli € Z,

introduced in equation (1) of Section 2. As an exception, in experiment 5 the
normally distributed noise is replaced by a uniformly distributed noise. A data set
D = {2 yD},.7, generated by sampling this model, is used to train the NNs,
which objective is to approximate the unknown function g(x) as much as possible.
Of course, the only information the MLPs know about g(x) is through the data set
(with noise) as is the case in real applications.

The parameter values of each experiment are as follows. All the considered
MLPs have one hidden layer. These MLPs are trained by using the Mean Squared
Error (MSE) loss function combined with the Adam method, based on a con-
stant step length of 0.1. In Table 1 we summarize the default parameter values.
The SQ-MLPs and the DC-MLPs are based on the logistic and the softplus ac-
tivations, respectively in all the experiments but in experiment 6. Notice that in
Section 2.4 we have used the rectified activation as the prototypical DC-MLP for
simplicity. However, in this section we prefer to use its smooth version, the soft-
plus activation, to obtain smooth regression functions (it is well known that the
rectified activation produces piecewise linear graphs as in Fig. 8 (B)).
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Table 1: Parameter values

Training Noise Data points Neurons
Loss Method Iterations Step length o (Hidden layer)
MSE Adam 20,000 01 | 1 200 200

For each experiment we report a figure and a table. On the one hand, each
figure has four plots: the two plots on the left column correspond to SQ-MLPs
and the two plots on the right column correspond to DC-MLPs, with identical
parameters for the two columns, except for the activation function (see, for exam-
ple, Fig. 3). On the other hand, each table reports the following results obtained
after training: the best MSE loss obtained in the training process, two overfitting
indexes and the total variation of the derivative of the regression function at the
regression points (see, for example, Table 2). The MSE loss corresponds to

L") = %Z (v = flaDs67))".

i€l

An MSE equal to 0 indicates that a global optimizer has been computed. In this
case the regression function f has learned the data points, that is, it shows full
overfitting. An MSE greater than 0O is preferable since it indicates a lower level of
overfitting, if any.

The overfitting index (OI;) measures the average distance of the trained re-
gression function f to the unknown function g at the data points:

01 =7 37 1 o) = £9;67) .

1€

The closer f and g are, the lower O1 is.
The overfitting index (O15) measures the percentage of data points for which
the trained regression function f disagrees with g by more than ¢ :

#{Data points such that | g(z®) — f(2©;0*) | > ¢}
# {Data points } o

OI, =100

where we have set ¢ = o/5 for all the experiments. As before, the closer f and g
are, the lower O15 is. Notice that OI; and O, can only be computed in synthetic
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experiments since they require to know function g (normally unknown in real
applications).

We also compute the total variation of the derivative of the regression function
at the regression points as follows:

Vir= > A=Y | flri; 07) = f(@i07) |,

1€1~ 1€1~

where Z= = {1,...,1 — 1}. For all the regression functions in our experiments,
we report the corresponding value of V.

Summary. As we will see in the following experiments:

* SQ-MLPs show overfitting in all cases, high values of V and large deriva-
tive values at some points (zigzag-shaped graphs) in line with Propositions
1 and 2.

* In contrast, DC-MLPs show no overfitting in all cases, low values of V}
and low derivative values, in line with Corollary 1.

* The overfitting level of SQ-MLPs results directly proportional to: the num-
ber of neurons, the number of training iterations and the magnitude of the
data noise. However, the overfitting level decreases as the number of data
points increases.

3.1.1. Experiment I1: Does the number of data points affect the overfitting level?

In this experiment we analyze the effect of the number of data points (20
versus 200). The other parameters can be found in Table 1 and the unknown
function corresponds to

g(x) = 3 sin(x/1.5) + (2/3)%

As the result of the experiment, we observe that the overfitting level decreases as
the number of data points increases. See Fig. 3 and Table 2 for details.
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—— Regression function  ----- Unknown function e Data points

(A) [SQ-MLP, 20 points] (B) [DC-MLP, 20 points]

Output variable (y)
Output variable (y)

-10 -5 0 5 10 -10 -5 0 5 10
Input variable (x) Input variable (x)

(C) [SQ-MLP, 200 points] (D) [DC-MLP, 200 points]

Output variable (y)
Output variable (y)

-10 -5 0 5 10 -10 -5 0 5 10
Input variable (x) Input variable (x)

Figure 3: Experiment 1 - Does the number of data points affect the overfitting level? Left column:
In SQ-MLPs the overfitting level decreases as the number of data points increases. However,
the zigzag becomes steeper as the number of data points increases (compare (A) and (C)). Right
column: In DC-MLPs the overfitting level decreases as the number of data points increases. See
Table 2 for numerical results.
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Table 2: Experiment 1: Numerical results corresponding to Figure 3.

Figure | Parameters

Results obtained after training
MSEloss OI, Ol (%) Vi

MLP Points
1(A) SQ 20
1(B) DC 20

0.0000  0.9108  90.00 31.93
0.6585  0.5759  75.00 22.85

1(C) | SQ 200
1) | DC 200

0.5022 04310 74.00 1155.65

0.7880  0.1735  33.50 15.57

3.1.2. Experiment 2: Does the number of neurons affect the overfitting level?

In this experiment we analyze the effect of the number of neurons (20 versus
200). The other parameters can be found in Table 1 and we use the same unknown
function g(z) as in Experiment 1. After training the corresponding MLPs, we
observe that increasing the number of neurons increases the overfitting level of

SQ-MLPs, in contrast to DC-MLPs. See Fig. 4 and Table 3 for details.
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—— Regression function  ----- Unknown function e Data points

(A) [SQ-MLP, 20 neurons] (B) [DC-MLP, 20 neurons]

Output variable (y)
Output variable (y)

-10 -5 0 5 10 -10 -5 0 5 10
Input variable (x) Input variable (x)
(C) [SQ-MLP, 200 neurons] (D) [DC-MLP, 200 neurons]

._.

)
I
[S)

(6]

Output variable (y)
Output variable (y)
[6,]

o
o

-10 -5 0 5 10 -10 -5 0 5 10
Input variable (x) Input variable (x)

Figure 4: Experiment 2 - Does the number of neurons affect the overfitting level? Left column:
The SQ-MLP with 200 neurons shows a higher level of overfitting (the corresponding SQ-MLP
can learn more data points). Right column: The DC-MLPs with 20 and 200 neurons show the
same level of overfitting. See Table 3 for numerical results.
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Table 3: Experiment 2: Numerical results corresponding to Figure 4.

Figure | Parameters Results obtained after training
MLP Neurons | MSEloss Ol Ol (%) Vi
2(A) | SQ 20| 0.6157 03384 59.00 342.83
2(B) | DC 20 | 0.7967 0.1691  28.00 15.04
2(C) SQ 200 | 0.5022 0.4310 74.00 1155.65
2(D) | DC 200 | 0.7880  0.1735  33.50 15.57
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3.1.3. Experiment 3: Does the number of training iterations affect the overfitting
level?

‘— Regression function  ----- Unknown function e Data points |

(A) [SQ-MLP, 10,000 iterations] (B) [DC-MLP, 10,000 iterations]
. 2 .

Output variable (y)
Output variable (y)

-2 -2
-10 -5 0 5 10 -10 -5 0 5 10
Input variable (x) Input variable (x)
(C) [SQ-MLP, 20,000 iterations] (D) [DC-MLP, 20,000 iterations]
2 - 2 N

[

Output variable (y)
Output variable (y)
o

-1

0 0
Input variable (x) Input variable (x)

Figure 5: Experiment 3 - Does the number of training iterations affect the overfitting level? Left
column: The SQ-MLP trained with 20,000 Adam iterations shows a higher level of overfitting (the
corresponding regression function learns more points by further reducing the MSE loss). Right
column: The DC-MLPs trained with 10,000 and 20,000 Adam iterations show the same level of
overfitting. See Table 4 for numerical results.
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Table 4: Experiment 3: Numerical results corresponding to Figure 5.

Figure Parameters Results obtained after training
MLP Iterations | MSEloss Ol Ol (%) Vi

3(A) | SQ 10,000 0.1750  0.1459  61.00 82.21
3B) | DC 10,000 0.1994  0.0890  28.00 12.32

3(0) SQ 20,000 0.1402  0.1888  65.00 307.33
3(D) | DC 20,000 0.1992  0.0883  30.50 12.16

In this experiment we analyze the effect of the number of training iterations
(10,000 versus 20,000 Adam iterations). The unknown function corresponds to:

g(x) = sin(x).

Given that this function takes values in the interval [—1, 1], we set 0 = 0.5 for the
normally distributed noise. The other parameters can be found in Table 1. In this
experiment, we observe that increasing the number of Adam iterations increases
the overfitting level of SQ-MLPs, in contrast to DC-MLPs. See Fig. 5 and Table
4 for details.
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3.1.4. Experiment 4: Does the magnitude of the data noise affect the overfitting
level?

‘— Regression function  ----- Unknown function e Data points |

(A) [SQ-MLP, 0 = 1] (B) [DC-MLP, 0 = 1]
15 15

510 510
Z Z
2 2
Q Q
® )
& &
> 5 > 5
b =
32 =3
[=% o
- -
=3 =3
o o

—-10 -5 0 5 10 -10 -5 0 5 10
Input variable (x) Input variable (x)
(C) [SQ-MLP, o = 2] (D) [DC-MLP, o = 2]

15

Output variable (y)
Output variable (y)

0 5 -10 -5 0] 5 10
Input variable (x) Input variable (x)

Figure 6: Experiment 4 - Does the magnitude of the data noise affect the overfitting level? In-

creasing the magnitude of the data noise increases the overfitting level, which is clearly higher for
SQ-MLPs (left column) than for DC-MLPs (right column). See Table 5 for numerical results.
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Table 5: Experiment 4: Numerical results corresponding to Figure 6.

Figure | Parameters Results obtained after training
MLP oo | MSEloss OI; Ol (%) Vi
4(A) | SQ 1 0.4849  0.4289 69.00 1243.91
4(B) | DC 1 0.7940 0.1681  27.00 5.26
4(C) | SQ 2 1.7496  0.9525 92.00 2486.31
4 (D) | DC 2 3.1582  0.3345 64.50 8.68

In this experiment we analyze the effect of the magnitude of data noise (0 = 1
versus 0 = 2). In order to compute O, we have set ¢ = 1/5 for the two values
of 0. The other parameters can be found in Table 1 and the unknown function
corresponds to:

g(x) = 10/(1 + exp(—x)).

Result of the experiment: we observe that increasing the magnitude of the data
noise increases the overfitting level, which is clearly higher for SQ-MLPs than for
DC-MLPs. See Fig. 6 and Table 5 for details.

3.1.5. Experiment 5: What results would be obtained if the data noise had a
uniform distribution?

In this experiment we replace the normal distribution N (0, o) by the uniform
distribution U(—1.5,1.5) to model the data noise . Notice that in this case the
expectation and standard deviation of ¢ are 0 and 0.87, respectively. The other
parameters can be found in Table 1 and the unknown function corresponds to:

g(w) = (1/20)707™.

Now, for the uniform noise, we obtain results that are similar to those obtained for
the normal noise in the previous experiments: a) SQ-MLPs show a higher level of
overfitting compared to DC-MLPs. b) Increasing the number of neurons increases
the overfitting level of SQ-MLPs, in contrast to DC-MLPs where we observe a
slight reduction of the overfitting level. See Fig. 7 and Table 6 for details.
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—— Regression function

Unknown function

e Data points

(A) [SQ-MLP, 200 neurons]

(B) [DC-MLP, 200 neurons]

Output variable (y)

Output variable (y)
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Input variable (x) Input variable (x)
(C) [SQ-MLP, 2000 neurons] (D) [DC-MLP, 2000 neurons]
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Input variable (x)

Input variable (x)

Figure 7: Experiment 5 - What results would be obtained if the data noise had a uniform distri-
bution? Left column: The SQ-MLP with 2000 neurons shows a higher level of overfitting. Right
column: The DC-MLP with 2000 neurons shows a slight reduction of the overfitting level. See
Table 6 for numerical results.

Table 6: Experiment 5: Numerical results corresponding to Figure 7.

Figure | Parameters Results obtained after training
MLP Neurons | MSEloss OI; Ol (%) Vi
5A) | SQ 200 | 0.7236  0.2367 52.50  228.87
5B) | DC 200 | 0.7770  0.1754  44.00 56.24
5(C) SQ 2000 | 0.6786  0.2648  46.00 392.08
5() | DC 2000 | 0.7997 0.1152  11.50 34.15
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3.1.6. Experiment 6: What results would be obtained for other squashing and
convex activation functions?

‘— Regression function  ----- Unknown function e Data points |

(A) [SQ-MLP, Hyperbolic tangent] (B) [DC-MLP, RelU]

12 12
10 10
5 8 5 8
@ @
® 6 ® 6
= =
g g
= 4 = 4
=l >
=3 s
p=l >
S 2}, S 2t
0] 0]
-2 . - . _2 . .. .
-10 -5 0 5 10 —-10 -5 0 5 10
Input variable (x) Input variable (x)
12 (C) [SQ-MLP, Softsign] 12 (D) [DC-MLP, ELU]
10 10
5 8 s 8
<@ @
s 6 s 6
= =
g g
= 4 = 4
=l >
s s
=3 >
S 2}, S 2t
0] 0]
-2 . . . . -2 . . . .
-10 -5 0 5 10 -10 -5 0 5 10
Input variable (x) Input variable (x)

Figure 8: Experiment 6 - What results would be obtained for other squashing and convex activation
functions? Left column: SQ-MLPs show a high level of overfitting. Right column: DC-MLPs
show virtually no overfitting. See Table 7 for numerical results.
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Table 7: Experiment 6: Numerical results corresponding to Figure 8.

Figure | Parameters Results obtained after training
MLP MSEloss O, Ol (%) Vi

6(A) | SQ(Tahn) | 04586 0.4552 76.00 944.46
6(B) | DC(ReLU) | 07672 0.1902 39.50  10.94

6 (C) | SQ (Softsign) | 0.5382 03798  70.50  499.91
6(D) | DC(ELU) | 07801 0.1757 35.00  12.34

So far we have used the logistic activation, which is the prototypical squash-
ing function, and the softplus activation, which is a nonlinear convex function.
Now we compare alternative squashing activations, namely hyperbolic tangent
and softsign:

et — et
tanh(t) = ——
anh(?) et +e-t

t
softsing(t) = ——,
80 =78

versus alternative nonlinear convex activations, namely ReLLU and ELU:

ReLU(t) = max{0, t}

alet —1) ift <0
ELU(t):{ A

where in the ELU activation, « is a parameter. Notice that squashing and nonlin-
ear convex activations determine the SQ-MLPs and DC-MLPs, respectively. The
other parameters can be found in Table 1 and the unknown function corresponds
to:

g(x) = 10 exp(—2?/10).

Now, for the squashing activations, we obtain results that are similar to those
obtained for the logistic activation in the previous experiments. For the convex
activations, the results are similar to those obtained for the softplus activation.
See Fig. 8 and Table 7 for details.
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3.2. Experiments based on real-world data

In the experiments of Section 3, we have considered synthetic data, no regular-
ization techniques and shallow MLPs. In this section we compare again SQ-MLPs
versus DC-MLPs in the context of one-dimensional nonlinear regression, but in
order to enhance the previous numerical results, we consider real-wold data, reg-
ularization techniques and deep MLPs. Hardware and software settings are iden-
tical to that of Section 3. Now, we consider the following ten data sets from the
UCI machine learning repository [42], which contains real-wold data:

1. Bike Sharing.

2. Istanbul Stock Exchange.

3. Parking Birmingham.

4. Auto MPG.

5. Productivity Prediction of Garment Employees.

6. Air Quality.

7. Beijing PM2.5 Data.

8. AI41 2020 Predictive Maintenance Data Set.

9. EEG Steady-State Visual Evoked Potential Signals.
10. SML2010.

As we saw in Definition 1, shallow MLPs have only one hidden layer. In a pre-
liminary computational test, we have compared shallow SQ-MLPs versus shal-
low DC-MLPs by using the above ten data sets and have obtained similar results
(slightly better for DC-MLPs regarding the overfitting level). On the other hand,
MLPs with two or more hidden layers are usually termed deep MLPs. The rest of
this section is dedicated to compare deep SQ-MLPs versus deep DC-MLPs. Anal-
ogously to Definition 3, given an MLP f(x, #), we say that it is a deep DC-MLP if
it is deep and can be decomposed as follows f(x,0) = fi(x, 01)+ fao(x, 02), where
0 = (61,02), f1 is a convex function in = and f> is a concave function in = (see
[19]). It is not difficult to obtain deep DC-MLPs by the following proposition,
analogous to Proposition 4.
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Proposition 7 ([19]). If f(x;0) is a deep MLP with: a) Hidden layers indexed by

{=1,---,L—1.b) A nonlinear activation function which is increasing convex

(softplus, ReLU, leaky ReLU, ELU, etc.) in all the hidden layers. c) The identity

activation function in the output layer L. d) Non-negative weights wg) > 0in the

hidden layers ¢ = 2,--- | L — 1. Then it is a deep DC-MLP (notice that bias bZ@

?ave no sign constraints for all { and weights wg) have no sign constraints for
=1,L)

In practice all we need to do to fulfill this proposition to obtain a deep DC-
MLP is: 1) Take a deep MLP with a nonlinear activation function, which is in-
creasing convex, in all the layers but the output one, which has the identity acti-
vation. 2) At the end of each iteration of the training method (SGD, Adam, etc.),
set equal to O all the weights with a negative value, in layers / = 2, --- | L — 1.

The training parameters for each experiment are as follows. The SQ-MLPs
and the DC-MLPs are based on the logistic and the softplus activations, respec-
tively in all the experiments. All the considered MLPs have two hidden lay-
ers (L = 3), with 200 neurons each. These MLPs are trained by using the
Mean Squared Error (MSE) loss function combined with the Adam optimization
method, based on a constant step length equal to 0.01, for data sets 1 to 5, and
0.001, for data sets 6 to 10.

For each approach, we have tuned the corresponding regularization parameters
independently. On the one hand, for the SQ approach, we have used the following
parameter values in all the experiments: A = 5 - 107 for the L, penalty term
Al|w]|3, and early stop patience equal to 100 iterations (number of iterations with
no loss improvement with the validation set, after which training will be stopped).
On the other hand, for the DC approach, we have used the following parameter
values in all the experiment: A = 5 - 1079 and early stop patience equal to 500
iterations.

Furthermore, we have applied Dropout on data sets 1 to 5 and DropConnect
on data sets 6 to 10. Dropout has been applied in layers ¢ = 1,2, with Dropout
rate p = 0.75 and p = 0.30 for the SQ and DC approaches, respectively (in this
case, p is the probability of setting a given activation in a layer to zero). On the
other hand, DropConnect has been applied in layers ¢ = 2, 3, with DropConnect
rate p = 0.30 for the SQ and DC approaches (in this case, p is the probability of
setting a given weight in a layer to zero) [43].

For each experiment we report a figure which has four plots labeled from (A)
to (D). In each plot we represent the two nonlinear regression functions corre-
sponding to the SQ and DC approaches. Notice that the plots of the ten data sets
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have been scaled to the square [0, 1] x [0, 1] for a homogeneous presentation.
Plot (A) is obtained without any regularization technique. In contrast, plots (B),
(C) and (D) are obtained by using regularization L, early stopping and Dropout/-
DropConnect, respectively for the SQ and DC approaches (see, for example, Fig.

9).

Summary. Next, we summarize the general trends for plots (A) to (D) that can
be observed in the following ten experiments (see Fig. 9 to Fig. 17):

3.2.1.

Plot (A) - MLPs trained without regularization: Approach SQ shows over-
fitting in all the cases, but for data set 3. Approach DC shows no overfitting
in all the cases.

Plot (B) - MLPs trained with L, regularization: The results of both ap-
proaches are almost the same.

Plot (C) - MLPs trained with early stopping regularization: The results of
both approaches are similar.

Plot (D) - MLPs trained with Dropout/DropConnect regularization (we have
used Dropout in data sets 1 to 5 and DropConnect in data sets 6 to 10): The
results of both approaches are also similar, but for data set 1 where the SQ
result seems unsatisfactory for practical purposes.

Therefore, we can conclude that the DC approach self-regularizes in con-
trast to the SQ approach, which requires regularization and obtains the best
results by using L, regularization.

Data set 1: Bike Sharing

This data set contains hourly and daily counts of rental bicycles throughout
2011 and 2012 on the Capital bikeshare system with corresponding weather and
seasonal information in Washington, D.C., USA [44]. To set our nonlinear regres-
sion problem we consider the following variables from the data set:

29 = ‘Day i-th of the year (starting from Jan 1, 2012)’

y¥ = ‘Count of total rental bikes (per day) including both casual and registered’

(varible ‘cnt’ in the data set)
ieZ={1,...,366}.
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Figure 9: Data set 1 - Bike Sharing. The regression function estimates the total rental bikes per
day, along the whole year. Notice that the plots of the five data sets have been scaled to the square
[0, 1] x [0, 1] for a homogeneous presentation. Plot (A) - MLPs trained without regularization:
Approach SQ shows overfitting, in sharp contrast with approach DC. Plot (B) - MLPs trained
with Lo regularization: The results of both approaches are almost the same. Plot (C) - MLPs
trained with early stopping regularization: The results of both approaches are similar. Plot (D) -
MLPs trained with Dropout regularization: Overfitting is avoided by both approaches, but the SQ
regression function seems unsatisfactory for practical purposes.

37



Table 8: Data set 1 - Bike Sharing: Numerical results corresponding to Figure 9.

Figure Parameters Results obtained after training
MLP Regularization | MSE loss Vi

8(A) | SQ - 0.0091 1904.98

8(A) | DC - 0.0177 5.30

8 (B) SQ Lo 0.0209 3.49

8(B) | DC Ly 0.0182 4.79

8(O) SQ  Early stopping | 0.0167 4.10

8 (C) DC Early stopping | 0.0219 3.41

8(D) | SQ Dropout 0.0202 11.87

8 (D) DC Dropout 0.0198 4.01

3.2.2. Data set 2: Istanbul Stock Exchange

This data set includes the returns of the Istanbul Stock Exchange (ISE) with
seven other international indices: SP, DAX, FTSE, NIKKEI, BOVESPA, MSCE-
EU, MSCI-EM from January 5, 2009 to February 22, 2011 [45]. To set our non-
linear regression problem we consider the following variables from the data set:

29 = ‘Day i-th of the year (starting from Jan 5, 2009)’

y(i) = ‘Cumulative return of ISE at the end of the i-th day, from Jan 5, 2009’
(computed from varible ‘TL BASED ISE’ in the dataset)
ieZ=1{1,...,536}.
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Figure 10: Data set 2 - Istanbul Stock Exchange (ISE). The regression function approximates the
daily cumulative return of the ISE, along two years. The corresponding comments for plots (A) to
(D) are similar to those in Fig. 9, except that Dropout now obtains a SQ regression function that
seems acceptable for practical purposes.
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Table 9: Data set 2 - Istanbul Stock Exchange: Numerical results corresponding to Figure 10.

Figure Parameters Results obtained after training
MLP Regularization | MSE loss Vi

9(A) | SQ - 0.0004 74.65
9(A) | DC - 0.0035 2.30
9MB) | SQ Loy 0.0052 1.84
9B) | DC Loy 0.0037 2.27
9(C) SQ  Early stopping | 0.0053 10.01
9(C) DC Early stopping | 0.0038 2.29
9oMD) | SQ Dropout 0.0076 5.73
9 (D) DC Dropout 0.0063 2.72

3.2.3. Data set 3: Parking Birmingham

This data set contains data collected from Birmingham parking lots managed
by Birmingham City Council’s NCP, UK Open Government License (OGL) [46].
To set our nonlinear regression problem we consider the occupancy in the parking
lot with CodeNumber BHMBCCMKTO1 during the 4 Saturdays of November,
2016. The occupancy is measured at 18 time steps every Saturday (from 8:00 am
till 16:30, every 30 minutes approximately). We consider the following variables
from the data set:

27 = “j-th time step corresponding to the j-th Saturday’

y) = ‘Number of cars in the parking lot corresponding to 2:(4)’
(variable ‘Occupancy’ in the data set)
ieZ=A{1,...,18}, j e J ={1,...,4}.
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Figure 11: Data set 3 - Parking Birmingham. The regression function estimates the number of cars
in a parking lot, for Saturdays in November. The corresponding comments for plots (A) to (D) are
similar to those in Fig. 10, except that now the SQ regression function does not show overfitting

in plot (A).
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Table 10: Data set 3 - Parking Birmingham: Numerical results corresponding to Figure 11.

Figure Parameters Results obtained after training

MLP Regularization | MSE loss Vi
10(A) | SQ - 0.0083 32.87
10(A) | DC - 0.0091 11.72
10B) | SQ Lo 0.0111 12.83
10(B) | DC Ly 0.0094 11.51
10(C) | SQ Early stopping | 0.0088 10.44
10(C) | DC Early stopping | 0.0116 9.36
10(D) | SQ Dropout 0.0152 14.00
10(D) | DC Dropout 0.0167 13.42

3.2.4. Data set 4: Auto MPG

The data concerns city-cycle fuel consumption in miles per gallon, to be pre-
dicted in terms of 3 multivalued discrete and 5 continuous attributes [47]. To set
our nonlinear regression problem we consider the following variables from the
data set:

2 = ‘Horsepower (hp)’

y¥ = ‘Miles per gallon’
(variables ‘horsepower’ and ‘mpg’ in the data set)
ieZ=1{1,...,392}.
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Figure 12: Data set 4 - Auto MPG. The regression function estimates the miles per gallon as
a function of the car horsepower. In plots (A), (C) and (D), the corresponding DC regression
function seems more appropriate than the SQ counterpart, for practical purposes. In plot (B) both
regression functions are similar.
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Table 11: Data set 4 - Auto MPG: Numerical results corresponding to Figure 12.

Figure Parameters Results obtained after training

MLP Regularization | MSE loss Vi
11 (A) | SQ - 0.0108 329.00
11 (A) | DC - 0.0129 8.19
11(B) | SQ Lo 0.0152 1.51
11 (B) | DC Ly 0.0136 1.84
11 (C) | SQ Early stopping | 0.0133 7.41
11 (C) | DC Early stopping | 0.0141 2.01
11(MD) | SQ Dropout 0.0145 3.47
11(D) | DC Dropout 0.0158 2.75

3.2.5. Data set 5: Productivity Prediction of Garment Employees

This data set includes important attributes of the garment manufacturing pro-
cess and employee productivity, which have been collected manually and also
validated by industry experts [48]. To set our nonlinear regression problem we
consider the following variables from the data set:

2 = “Financial incentive (in Bangladeshi takas)’

y(i) = ‘Productivity (in the range [0, 1])’
(variables ‘incentive’ and ‘productivity’ in the data set)
ieZ=1{1,...,582}.
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Figure 13: Data set 5 - Productivity Prediction of Garment Employees. The regression function
estimates the productivity as a function of the financial incentive. Plot (A) - MLPs trained without
regularization: Approach SQ shows overfitting, in contrast with approach DC. Plot (B) - MLPs
trained with Lo regularization: The results of both approaches are almost the same. Plot (C) -
MLPs trained with early stopping regularization: The results of both approaches are similar. Plot
(D) - MLPs trained with Dropout regularization: The results of both approaches are similar.

45



Table 12: Data set 5 - Productivity Prediction of Garment Employees: Numerical results corre-
sponding to Figure 13.

Figure Parameters Results obtained after training
MLP | MLP Regularization | MSE loss Vi
12(A) | SQ - 0.0077 260.81
12(A) | DC - 0.0085 3.77
12(B) | SQ Loy 0.0110 0.89
12(B) | DC Ly 0.0094 1.83
12(C) | SQ Early stopping | 0.0088 3.00
12 (C) | DC Early stopping | 0.0104 0.85
12(MD) | SQ Dropout 0.0108 4.80
12(D) | DC Dropout 0.0092 4.76

3.2.6. Data set 6: Air Quality

This data set contains the responses of a gas multisensor device located on a
field within an Italian city. Hourly responses averages are recorded along with
gas concentrations references from a certified analyzer [49]. To set our nonlinear

regression problem we consider the hourly averaged NOy sensor response from
March 11, 2004 till March 21, 2004

2™ = ‘Hourly i-th time step (starting from March 11, 2004 till March 21, 2004)’

y(i) — ‘Average NO, sensor response corresponding to () (ug/m?)’
(variables ‘Date’, ‘Time’, and ‘PT08.S3(NOx)’ in the data set)
ieZ=A{1,...,264}.
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Figure 14: Data set 6 - Air Quality. The regression function estimates the hourly averaged NOy
sensor response, along 11 days. In data sets 6 to 10 we use DropConnect instead of Dropout (see

plot (D)).

47



Table 13: Data set 6 - Air Quality: Numerical results corresponding to Figure 3.2.6.

Figure Parameters Results obtained after training
MLP | MLP Regularization | MSE loss Vi
13(A) | SQ - 0.0180 492.97
13(A) | DC - 0.0290 1.85
13(B) | SQ Lo 0.0323 1.34
13(B) | DC Ly 0.0297 1.68
13(C) | SQ Early stopping | 0.0276 1.76
13(C) | DC Early stopping | 0.0282 1.15
13 (D) | SQ  DropConnect 0.0280 6.65
13(D) | DC  DropConnect 0.0280 7.18

3.2.7. Data set 7: Beijing PM2.5 Data

This data set contains the PM, 5 data of the US Embassy in Beijing [50]. PM; 5
stands for Particulate Matter 2.5, fine airborne particles with a diameter of 2.5
micrometers or smaller. To set our nonlinear regression problem we consider the
hourly dew point temperature from January 10, 2010 until January 19, 2010:

2 = ‘Hourly i-th time step (starting from January 10, 2010
until January 19, 2010)’

yY = ‘Dew point temperature corresponding to 2 (°C)’
(variables ‘year’, ‘month’, ‘day’, ‘hour’, and ‘DEWP’ in the data set)
ieZ=1{1,...,240}.
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Figure 15: Data set 7 - Beijing PM2.5 Data. The regression function estimates the hourly dew
point temperature, along 10 days. The SQ regression functions clearly depend on the regularization
method, in contrast to the DC regression functions.
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Table 14: Data set 7 - Beijing PM2.5 Data: Numerical results corresponding to Figure 3.2.7.

Figure Parameters Results obtained after training

MLP Regularization | MSE loss Vi
14 (A) | SQ - 0.0011 154.61
14 (A) | DC - 0.0084 3.34
14(B) | SQ Lo 0.0129 2.54
14 (B) | DC Ly 0.0094 3.23
14 (C) | SQ Early stopping | 0.0044 8.84
14 (C) | DC Early stopping | 0.0089 3.03
14 (D) | SQ  DropConnect 0.0076 7.99
14 (D) | DC  DropConnect 0.0082 3.77

3.2.8. Data set 8: AI41 2020 Predictive Maintenance Data Set

The AI4l 2020 Predictive Maintenance Data set is a synthetic data set that
reflects real predictive maintenance data encountered in industry [51]. This data
set was introduced in the Artificial Intelligence for Industries conference (AI41)
[52]. To set our nonlinear regression problem we consider the air temperature
generated by a random walk process:

29 = “i-th time step of the random walk process’

y¥ = “Air temperature corresponding to = (K)’
(variable ‘UDI’ and ‘Air temperature [K]  in the data set)
ieZ={1,...,10000}.
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Figure 16: Data set 8 - AI41 2020 Predictive Maintenance Data set. The regression function
estimates the temperature, along 10000 time steps.
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Table 15: Data set 8 - AI41 2020 Predictive Maintenance Data set: Numerical results correspond-
ing to Figure 3.2.8.

Figure Parameters Results obtained after training

MLP Regularization | MSE loss Vi
15(A) | SQ - 0.0024 65.55
15(A) | DC - 0.0142 4.76
I5B) | SQ Loy 0.0140 4.48
15(B) | DC Ly 0.0149 4.77
15(C) | SQ Early stopping | 0.0077 6.23
15(C) | DC Early stopping | 0.0142 4.74
15 (D) | SQP  DropConnect 0.0080 8.80
15(D) | DC  DropConnect 0.0088 7.98

3.2.9. Data set 9: EEG Steady-State Visual Evoked Potential Signals

This database consists on 30 subjects performing Brain Computer Interface for
Steady State Visual Evoked Potentials (BCI-SSVEP) [53]. To set our nonlinear
regression problem we consider the brain signals for the experiment conditions
AO001SB1_1 (first experiment on the Five Box Visual Test 1 for the first subject of
the group A). Specifically, we analyze the values recorded by the left occipital lobe
(O1) electrode from step 820 to step 1640. We consider the following variables
from the data set:

2™ = “j-th time step (starting from step 820 until step 1640)’
y@ = ‘Ol electrode reading corresponding to z® (uV)’
(variable ‘O1’ in the data set)
ieZ=1{1,...,820}.
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Figure 17: Data set 9 - EEG Steady-State Visual Evoked Potential Signals. The regression function
estimates the brain signal of the left occipital lobe electrode, along 820 time steps.
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Table 16: Data set 9 - EEG Steady-State Visual Evoked Potential Signals: Numerical results
corresponding to Figure 3.2.9.

Figure Parameters Results obtained after training

MLP Regularization | MSE loss Vi
16 (A) | SQ — 0.0096 17.29
16 (A) | DC — 0.0141 2.94
16 (B) | SQ Loy 0.0169 2.18
16 (B) | DC Ly 0.0143 2.78
16 (C) | SQ Early stopping | 0.0102 3.98
16 (C) | DC Early stopping | 0.0135 2.79
16 (D) | SQ  DropConnect 0.0133 6.09
16 (D) | DC  DropConnect 0.0128 4.96

3.2.10. Data set 10: SML2010

This data set is collected from a monitor system mounted in a domotic house,
specifically a solar-powered house known as Small Medium Large System (SML-
system) [54]. It corresponds to approximately 40 days of monitoring data [55].
To set our nonlinear regression problem we consider the outdoor relative humid-
ity (%) from March 19, 2012 until March 20, 2012, measured every 15 minutes
throughout both days:

2 = ‘j-th time step (starting from March 19, 2012 until March 20, 2012)’
y¥ = ‘Outdoor relative humidity corresponding to z(® (%)’
(variables ‘1:Date’, ‘2:Time’, and ‘23:Humidity_Outside_Sensor’ in

the data set)
e ={1,...,192}.
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Figure 18: Data set 10 - SML2010. The regression function estimates the outdoor relative humidity
(%), along two days.
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Table 17: Data set 10 - SML2010: Numerical results corresponding to Figure 3.2.10

Figure Parameters Results obtained after training

MLP Regularization | MSE loss Vi
17 (A) | SQ - 0.0005 19.46
17 (A) | DC - 0.0037 0.04
17(B) | SQ Lo 0.0049 0.06
17(B) | DC Ly 0.0039 0.04
17(C) | SQ Early stopping | 0.0014 2.94
17 (C) | DC Early stopping | 0.0039 0.05
17(D) | SQ  DropConnect 0.0051 2.51
17 (D) | DC  DropConnect 0.0037 0.87

4. Conclusions

In this work, we have shown the ability of the Difference of Convex Multilayer
Perceptron (DC-MLP) to avoid overfitting in one-dimensional nonlinear regres-
sion. That is, DC-MLPs self-regularize. It has been shown that shallow MLPs
with a convex activation (ReLU, softplus, etc.) fall in the class of DC-MLPs.
On the other hand, we have called SQ-MLP the shallow MLP with a Squashing
activation (logistic, hyperbolic tangent, etc.). In the numerical experiments, we
have shown that DC-MLPs used for one-dimensional nonlinear regression avoid
overfitting, in contrast with SQ-MLPs.

In Section 3.1, we have carried out a set of six nonlinear regression experi-
ments based on synthetic data. In these experiments, no regularization techniques
have been considered — as Lo-regularization, early stopping, Dropout, etc. — en-
abling the detection of self-regularization, i.e., avoid overfitting. In this case,
DC-MLPs have shown virtually no overfitting, whereas SQ-MLPs have overfitted
in all cases. Furthermore, the overfitting level of SQ-MLPs has resulted directly
proportional to: the number of neurons, the number of training iterations and the
magnitude of the data noise. However, it has resulted inversely proportional to the
number of data points.

Additionally, in Section 3.2, we have carried out a set of ten nonlinear regres-
sion experiments based on real-world data. In these experiments, SQ-MLPs have
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required to be complemented with some regularization technique to avoid over-
fitting, in contrast with DC-MLPs. That is, DC-MLPs have shown an intrinsic
capacity to avoid overfitting, in line with the theoreticas results in Section 2.

In Section 2 we have proved that, on the regression interval, the derivative
of the rectified MLP, the typical DC-MLP, has a moderate variation, in contrast
to the derivative of the logistic MLP, the typical SQ-MLP, which is potentially
unbounded. We have also proved that overfitting regression functions have a po-
tentially unbounded derivative. These theoretical results would explain, at least
partially, the empirical results in Section 3.

"All in all, DC-MLPs could result very useful for practical purposes based on
one-dimensional nonlinear regression: they show no overfitting, avoiding the use
of any additional regularization technique. We expect that DC-MLPs will ease the
use of nonlinear regression for practical purposes. As a matter of further research,
we plan to extend our analysis to the multidimensional case.
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A. Minimal implementation of a DC-MLP in Pytorch - example

1 class DC_MLP (nn.Module) :

def

def

Note that, if in the previous class a squashing activation function is used (lo-
gistic, hyperbolic tangent, etc.), then, the DC-MLP becomes a SQ-MLP, by defi-

nition.

__init_ (self, D_in, H, D_out):

super (DC_MLP, self )._ _init__ ()

self.activ nn.Softplus ()
self.fcl nn.Linear (D_in, H)
self.fc2 = nn.Linear (H, D_out)

forward(self, x):

out = self.fcl (x)

out = self.activ(out)
out self.fc2 (out)
return out
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