
Fast Incremental Learning by Transfer Learning and
Hierarchical Sequencing

Laura Llopis-Ibora,∗, Cesar Beltran-Royoa, Alfredo Cuesta-Infantea, Juan J.
Pantrigoa

aComputer Science and Statistics Department, King Juan Carlos University,
Calle Tulipán s/n, Móstoles 28933, Madrid, Spain

Abstract

In this paper we address the Class Incremental Learning (CIL) problem, char-

acterized by sequences of data batches in which examples of different classes

occur at different times. From a theoretical point of view, we propose a new

approach that we call hierarchical sequencing and prove that any CIL task can

be sequenced into simple incremental classification tasks by means of the hier-

archical sequencing. From a practical point of view, we propose the HILAND

method for image classification, which combines the hierarchical sequencing with

transfer learning. In our experiments, the HILAND method has obtained state-

of-the-art results for the CIL problem, but with far less training effort through

transfer learning.

Keywords: class incremental learning, transfer learning, image classification

1. Introduction

Image classification is the most basic supervised task in computer vision,

and is fundamental to build smarter models that are capable of performing

higher-level tasks, such as detection, segmentation or generation. In detection

networks such as YOLO (Redmon et al., 2016) or SSD (Liu et al., 2016), the5

∗Corresponding author
Email addresses: laura.llopis@urjc.es (Laura Llopis-Ibor), cesar.beltran@urjc.es

(Cesar Beltran-Royo), alfredo.cuesta@urjc.es (Alfredo Cuesta-Infante),
juanjose.pantrigo@urjc.es (Juan J. Pantrigo)

Preprint submitted to September 5, 2022

image is divided in small regions and each region predicts the bounding box of

the entities in the picture as well as its class. Segmentation is another typical

computer vision task aimed to classify every single pixel in the image. Gen-

erative Adversarial Networks architecture (Goodfellow et al., 2014) include a

discriminator that is trained to distinguish between true and fake images. Im-10

age classification is also the bread and butter of many automated processes,

such as facial recognition at security checkpoints, image organization in photo-

graphic applications, or item separation on conveyor belts, just to mention a

few.

Convolutional Neural Networks (CNN) have boosted the performance of im-15

age classification up to human levels in several academic challenges. However,

real applications differ from these challenges in several points. First, in clas-

sification challenges both the number of samples and the number of different

classes is fixed. Second, the whole data set is available from the beginning.

Third, the data set consists of a number of examples large enough to get the20

models to generalize. And fourth, the classifier is meant to be executed once,

not to be deployed in a broader system.

On the other hand, if the data set is large, labeling is time consuming and

expensive, otherwise the performance is far from the expected. Moreover, train-

ing CNNs usually demands time and computing power, and for inference the25

classifier has to be integrated into the final system. Finally, it frequently hap-

pens that data arrives one by one or in small packages, and must be used and

discarded, as it happens in streams that cannot be stored due to its velocity and

volume. Besides, real applications may want to increase the number of classes

due to new requirements, which is usually a task that needs batches of new data30

rather than streams.

Each one of the aforementioned issues has been tackled with a variety of

techniques. The lack of labeled data can be overcome by transfer learning.

In fact, currently the most popular neural network libraries, such as PyTorch

(Paszke et al., 2019) and Tensorflow (Abadi et al., 2015), include ready-to-use35

CNNs that have been pretrained on large image data sets. Transfer learning

2

also allows faster training for new specific classes if the CNN is frozen, for it

can be loaded as a compiled module so that the training process is limited to

the weights of a new top. Additionally, this compiled module also facilitates

the integration into broader systems. Regarding the incoming data flow, two40

different approaches have been followed in parallel, according to how this data

is fed into the system during learning: streams and batches of data. If it arrives

in streams, it is dealt with both supervised and unsupervised methods for mas-

sive online analysis (Bifet et al., 2018). Our work focuses on data arriving in

batches in order to learn whole new classes sequentially in a supervised fashion.45

Arguably, being able to increase the number of classes to discriminate after

training the classifiers is the goal that has attracted more interest and research

effort. It is well known that the training process depends on the data set, so

changes in it bring further changes into the weights of the network. Since adding

new classes means adding new labeled samples to learn from, the system must50

be trained with the data set extended with these new samples in order to keep

its previous capabilities. Otherwise catastrophic forgetting will happen.

In recent years, an important stream of research has been devoted to over-

come catastrophic forgetting, under different denominations: continual learning

(Chen & Liu, 2018), lifelong learning (Parisi et al., 2019), sequential learning55

(McCloskey & Cohen, 1989) or incremental learning (Rebuffi et al., 2017). The

objective is to learn from data, preserving and extending acquired knowledge in

the different learning steps.

Specifically, the term Class Incremental Learning (CIL) is introduced in

(Rebuffi et al., 2017) together with the required properties of an algorithm to60

qualify as class-incremental:

1) It should provide a multiclass classifier trainable from a sequence of data

batches in which different classes occur at different batches.

2) At any time, the provided multiclass classifier should be competitive for

the classes observed so far.65

3) Its computational requirements and memory footprint should remain bounded,

3

or at least grow very slowly, with respect to the number of classes seen so

far.

In other words, CIL algorithms face two main problems:

1) Data availability. The samples from all the classes that can or will be70

ultimately learned are not available simultaneously at the beginning, so

the algorithms ignore all about the missing classes. This challenge is ad-

dressed through two strategies: By parameter fixing (parameter isolation

methods) or by parameter updating (replay methods and regularization

methods) (Delange et al., 2021).75

2) Storage constraints. To store the large amount of data used by CIL algo-

rithms is not possible in most of cases. To cope with this difficulty, two

strategies are used: By replaying previous data information (replay meth-

ods) or by only using the current data information (regularization-based

methods and parameter isolation methods) (Delange et al., 2021).80

CIL methods can be classified into three groups: Replay methods, regularization-

based methods and parameter isolation methods. Replay methods need to store

samples in raw format of already learned classes or generate pseudo-samples with

a generative model. To alleviate forgetting, these samples are replayed while

learning new classes. Some methods of this group are Incremental Classifier and85

Representation Learning (iCaRL) (Rebuffi et al., 2017), Generative-Rehearsal

(GR) (Lee et al., 2021) and Gradient Episodic Memory (GEM) (Lopez-Paz &

Ranzato, 2017), among others. According to the comparison reported in the sur-

vey (Delange et al., 2021), the leading method in this class is iCaRL, which stores

a subset of exemplars per class, selected to best approximate class means in the90

learned feature space (this strategy is known as hearding). Therefore, iCaRL

uses a nearest-mean-of-exemplars classification strategy. Another leading replay

approach is the Bias Correction (BiC) method (Wu et al., 2019). This method

employs a bias correction strategy to balance the importance between the al-

ready learned classes and the new ones, thus, addressing the class-imbalance95

4

problem.

In regularization-based methods an extra regularization term is used in the

loss function in order to consolidate already learned classes while learning new

classes. The importance of all neural network parameters is estimated and,

during learning later classes, changes to important parameters are penalized.100

This family of methods avoids storing samples of already learned classes. Some

methods of this class are: Memory Aware Synapses (MAS) (Aljundi et al., 2018),

Learning without Forgetting (LwF) (Li & Hoiem, 2018) and Elastic Weight

Consolidation (EWC) (Kirkpatrick et al., 2017).

Parameter isolation methods do not require to store samples of already105

learned classes. Instead, these methods isolate and fix parameters for already

learned classes. In this way these methods can guarantee maximal stability

of the learned task (zero forgetting). Some methods in this class are: Pack-

ing multiple tasks to a single Network (PackNet) (Mallya & Lazebnik, 2018)

and overcoming catastrophic forgetting with Hard Attention to the Task (HAT)110

(Serra et al., 2018).

Our contribution is twofold:

1) Theoretical point of view: We prove that any CIL task can be sequenced

into more simple incremental classification tasks by means of a new ap-

proach that we call hierarchical task sequencing (hierarchical sequencing,115

for short). The hierarchical sequencing is based on the so-called perfect

incremental classifiers, which attain 100% accuracy. These classifiers can

be trained sequentially and independently, which is well suited for the CIL

problem.

2) Practical point of view: Based on the hierarchical sequencing, we pro-120

pose the HILAND method for class incremental learning, where HILAND

stands for Hierarchical Incremental Learning Appending Naive Discrim-

inators. This new method obtains state-of-the-art results for the CIL

problem, but with less training effort by using transfer learning (Chollet,

2017). More specifically, HILAND uses a pretrained convolutional base125

5

combined with a densely connected linear classifier. The training effort

is very low for two reasons: (i) Only the linear classifier is trained. (ii)

Having a frozen convolutional base allows to extract and store the fea-

ture vectors by running the convolutional base only once for every input

image (the convolutional base is the most expensive part of the whole130

neural network). Then, these feature vectors are used repeatedly to train

the linear classifier. This approach is much faster than training with the

raw images, which requires running the convolutional base for every input

image at each training iteration.

The rest of the paper is organized as follows. Section 2 introduces the con-135

cept of perfect decomposition classifier which can be used to decompose any

multiclass classification problem into simpler tasks. Section 3 introduces the

hierarchical sequencing which can be used to sequence any CIL task into sim-

pler tasks. In Section 4 we derive the HILAND method, basically by combining

the hierarchical sequencing with transfer learning (based on pretrained CNNs).140

In Section 5 we compare our incremental learning approach to state of the art

CIL algorithms and test the impact that different pretrained CNNs may have

in the HILAND performance. A conclusion of our research is given in section 6

together with directions for future research.

2. Class static learning by task decomposition145

In this paper we consider the multiclass classification task and distinguish

between class static learning and class incremental learning. In the former all

the training data is available simultaneously (only one stage); whereas in the

later, the training data is available incrementally (one group of classes at each

stage) as we will see in Section 3. In this section, we show that any multiclass150

classification task can be decomposed into a set of decomposition classification

tasks in the context of class static learning.

It is well known that task decomposition can be used to solve large-scale

multiclass classification tasks by parallel computing (Lu & Ito, 1999). However,

6

in this paper we will use task decomposition not for parallel computing but for155

designing an effective method for class incremental learning. That is, we will be

inspired by the simple results on task decomposition of this section to develop

the more elaborated results on task sequencing of Section 3.

Definition 1 (Multiclass classification task). Let us consider a set of C classes

indexed by c ∈ C = {1, . . . , C}, a set of non-intersecting class data domains160

{Xc}c∈C, and a partition of the data domain into classes, i.e., X = X1∪. . .∪XC .

The perfect multiclass classification task T (X , C) aims to correctly decide the

class of any data vector x ∈ X ⊂ Rn.

Definition 2 (Perfect multiclass classifier). A perfect multiclass classifier for

task T (X , C), corresponds to a function f∗(x) : X → C such that:

f∗(x) = c if x ∈ Xc. (1)

That is, a perfect multiclass classifier f∗ gives the right answer for the ques-

tion ‘Which is the class of x?’ for any x ∈ X . Therefore a perfect multiclass165

classifiers attains an accuracy of 100%. This requires non-intersecting class data

domains in order to have a univoque answer of the perfect multiclass classifier.

That is, to classify any x there will be no ambiguity since it is in a single class.

Of course, this is an ideal situation since in practice we have imperfect classifiers

and multiclass classification tasks with data domains that may intersect in some170

ambiguity regions. Nonetheless, these ideal assumptions will help us to develop

useful algorithms for realistic incremental learning in Section 4.

Notice that task T (X , C) can be carried out by different perfect multiclass

classifiers and we denote by F∗(X , C) the set such classifiers. In this context, it

is useful to define the set Yc = f∗(Xc) for all c ∈ C. Thus, for any x0 ∈ Xc there175

is y0 ∈ Y0 such that y0 = f∗(x0) = c. In this paper, we use the notation [a : b]

to denote the set of integers from a to b. We also consider a set of K groups of

classes indexed by k ∈ K = {1, . . . ,K}. For simplicity of notation and without

loss of generality, we assume that all the groups contain the same number of

classes, say L. That is, the k-th group corresponds to the classes indexed by Ck =180

7

[(k−1)L+1 : kL] and the corresponding group data domain can be partitioned

into non-intersecting data domains as follows: XCk
= X(k−1)L+1 ∪ . . . ∪ XkL.

This implicitly assumes that C = LK.

Definition 3 (Decomposition classification task). Let us consider a set of non-

intersecting group data domains {XCk
}, for k ∈ K, and the corresponding parti-185

tion of the data domain X = XC1 ∪ . . .∪XCK
. The objective of the decomposition

classification task TCk
(X , C) is to correctly decide whether any data vector x ∈ X

is either in group k or in its complement. In the first case, this task also aims

to give the correct class of x.

Definition 4 (Perfect decomposition classifier). A perfect decomposition clas-

sifier for task TCk
(X , C), corresponds to a function f∗

Ck
(x) : X → {0} ∪ Ck such

that:

f∗
Ck
(x) =

 c if x ∈ Xc ⊂ XCk

0 if x ∈ X \ XCk
.

That is, a perfect decomposition classifier f∗
Ck

gives the right answer for the190

question ‘Is x in a class of group k?’ for any x ∈ X . If the answer is affirmative,

it also determines the class of x. We denote by F∗
Ck
(X , C) the set of all the

perfect decomposition classifier that can perform the task TCk
(X , C).

In the following proposition, we show that any multiclass classification task

can be decomposed into a set of decomposition classification tasks.195

Proposition 1 (Task decomposition). Let us consider a set of perfect decom-

position classifiers {f∗
Ck
}k∈K such that f∗

Ck
∈ F∗

Ck
(X , C). If we define

f∗(x) = maxk∈K{f∗
Ck
(x)} for all x ∈ X ,

then f∗ ∈ F∗(X , C). Therefore, the multiclass classification task T (X , C) can be

decomposed into the set of decomposition classification tasks {TCk
(X , C)}k∈K.

Proof: Let us prove that f∗ is a perfect multiclass classifier associated to

task T (X , C), that is, let us see that if x ∈ Xc0 ⊂ XCk0
then f∗(x) = c0. Given

8

the hypothesis, f∗
Ck0

(x) = c0, and f∗
Ck
(x) = 0 for any k ̸= k0. Thus

maxk∈K{f∗
Ck
(x)} = c0.

3. Class incremental learning by hierarchical sequencing

As we already pointed out, in the context of class incremental learning we200

assume that all the data is available incrementally (one group of classes at

each stage). This is in sharp contrast with the previous section, where all

the data was available simultaneously. The objective of this section is to show

that any multiclass classification task can be sequenced into a set of incremental

classification tasks. Specifically, we adapt the task decomposition of Proposition205

1 to the hierarchical sequencing of Proposition 2.

3.1. Hierarchical sequencing

As in the previous section, we consider a set of K groups of classes indexed

by k ∈ K. We also assume that all the groups contain the same number of

classes, say L. Let us define the incremental data domain up to group k as210

X[1:k] = XC1
∪ . . .∪XCk

, where XCk
= X(k−1)L+1 ∪ . . .∪XkL, for any k ∈ K. For

simplicity of notation we will write X[k] instead of X[1:k]. We begin defining the

incremental classification task as follows.

Definition 5 (Incremental classification task). Let us consider a set of non-

intersecting group data domains {XCk
}k∈K and the corresponding partition of the215

data domain X = XC1 ∪ . . .∪XCK
. The objective of the incremental classification

task T[k](X , C) is to correctly decide whether any data vector x ∈ X is either in

group k or in the union of groups prior to k, if any. In the first case, this task

also aims to give the correct class of x.

Next, let us define perfect incremental classifier. Roughly speaking, a set of220

perfect incremental classifiers will correspond to a set of classifiers that are

trained with data available incrementally, and that become more trustable as

new data become available (see Figure 1).

9

1 2 1 2

3

(a) (b) (c)

1 2

3

Figure 1: Perfect incremental classifier. In this figure, data is available incrementally with two

groups of classes: classes 1 and 2 (group 1), available at the first stage, and class 3 (group 2)

available at the second stage. (a) At the first stage, the first perfect incremental classifier f∗
[1]

,

the vertical line, classifies data from classes 1 and 2 with 100% accuracy. (b) At the second

stage, data form class 3 becomes available but the classifier f∗
[1]

is not trustable for this new

class. (c) At the second stage, the second perfect incremental classifier f∗
[2]

, the horizontal

line, shows 100% accuracy in order to classify data as ‘class 3’ or ‘no class 3’. In summary,

f∗
[2]

is more trustable that f∗
[1]

since it has been trained with old and new data (see Definition

6). This fact suggests a hierarchy, where recent classifiers should have preference over their

predecessors in deciding the class of a data point.

10

Definition 6 (Perfect incremental classifier). Given any k ∈ K, a perfect in-

cremental classifier for task T[k](X , C), corresponds to a function f∗
[k](x) : X →

Ck := {0} ∪ Ck such that:

f∗
[k](x) =



0 if x ∈ X[k−1],

(only for cases with k > 1)

c if x ∈ Xc ⊂ XCk

Yk,k+1 if x ∈ XCk+1

...

Yk,K if x ∈ XCK
,

(only for cases with k < K),

where Yk,i is a categorical random variable with categories Ck and with unknown

vector of parameters pk,i for any i > k, if any.225

More specifically, Yk,i = c if an element x of group i is (wrongly) classified as

class c of group k and Yk,i = 0, otherwise. Furthermore, vector pk,i = (pk,i,c)c∈Ck

such that pk,i,c = P (Yk,i = c). That is, a perfect incremental classifier f∗
[k] gives

the right answer for the question ‘Is x in a class of group k?’ for any x ∈ X[k].

If the answer is affirmative, it also determines the class of x. However, for230

any x ∈ X \ X[k] the answer may be wrong and it is given by a categorical

random variable. This is because the classifier f∗
[k] has no information regarding

the groups of classes posterior to the k-th group, if any. Therefore, a perfect

incremental classifier becomes more trustable as k increases. We denote by

F∗
[k](X , C) the set of all the perfect incremental classifiers that can perform the235

task T[k](X , C).

In the following proposition, we show that any multiclass classification task

can be sequenced into a set of incremental classification tasks, which will be use-

ful in the case of data only available incrementally, one group of classes at each

stage. Equation (2) establishes a hierarchy, where recent perfect incremental240

classifiers, being more trustable, have preference over their predecessors in de-

ciding the class of a data point. Therefore, the following proposition establishes

a hierarchical sequencing (see Figure 2).

11

1 2

3

Figure 2: Hierarchical sequencing. In this figure, the 3-class classification task can be se-

quenced by the perfect incremental classifiers f∗
[1]

and f∗
[2]

, trained at stages 1 and 2, respec-

tively (see Figure 1). Classifier f∗
[1]

gives the output 1 or 2, to declare a data point as class

1 or class 2, respectively (even for points of class 3). Classifier f∗
[2]

gives the output 3 or 0,

to declare a data point as class 3 or ‘no class 3’, respectively with 100% accuracy. In the

hierarchical sequencing (Proposition 2), the set of classifiers {f∗
[1]

, f∗
[2]

} is combined into a

single classifier f∗(x) = max{f∗
[1]

(x), f∗
[2]

(x)}, which works as follows. Given a data point, say

x0, we have two cases. Case 1): If f∗
[2]

(x0) = 3 then x0 can be classified as class 3 with 100%

accuracy. It does not matter the class declared by f∗
[1]

(x0) (class 1 or class 2). If, for example,

f∗
[1]

(x0) = 2 we would have f∗(x0) = max{2, 3} = 3, the right class. Case 2): If f∗
[2]

(x0) = 0,

then x0 can be classified as ‘no class 3’ with 100% accuracy. In this case, f∗
[1]

(x0) will give

the class of x0 with 100% accuracy (class 1 or class 2). If, for example, f∗
[1]

(x0) = 2 we would

have f∗(x0) = max{2, 0} = 2, the right class. In summary, the class of x0 can be determined

by max{f∗
[1]

(x0), f∗
[2]

(x0)} with 100% accuracy. This formula establishes a hierarchy, where

the more recent classifier f∗
[2]

has preference over its predecessor f∗
[1]

in deciding the class of a

data point (see Proposition 2).

12

Proposition 2 (Hierarchical sequencing). Let us consider a set of perfect in-

cremental classifiers {f∗
[k]}k∈K such that f∗

[k] ∈ F∗
[k](X , C). If we define

f∗(x) = maxk∈K

{
f∗
[k](x)

}
for all x ∈ X , (2)

then, f∗ ∈ F∗(X , C). Therefore, the multiclass classification task T (X , C) can

be sequenced into the set of incremental classification tasks {T[k](X , C)}k∈K.245

Proof: Let us prove that f∗ is a perfect multiclass classifier associated to

task T (X , C). Two steps: Step 1) Let us see that if x ∈ Xc0 , such that c0 ∈ Ck0 ,

then f∗(x) = c0. Given the hypothesis,

f∗
[k](x) ∈ Ck for all k < k0

f∗
[k0]

(x) = c0

f∗
[k](x) = 0 for all k > k0.

Thus

f∗(x) = maxk∈K

{
f∗
[k](x)

}
= max

{
maxk{f∗

[k](x) | k < k0}, c0, 0
}

= c0,

where we have used that

maxk{f∗
[k](x) | k < k0} < c0. (3)

We prove (3) in two steps. Step 1.a) Given that

{f∗
[k](x) | k < k0} ⊂

⋃
k<k0

Ck = [0 : (k0 − 1)L],

it is clear that

maxk{f∗
[k](x) | k < k0} ≤ (k0 − 1)L.

Step 1.b) Given that

c0 ∈ Ck0
= [(k0 − 1)L+ 1 : k0L].

13

it is also clear that (k0 − 1)L+ 1 ≤ c0, which proves (3).

Step 2) For any x ∈ X , let us see that if f∗(x) = c0 ∈ Ck0
then x ∈ Xc0 . By

hypothesis,

f∗(x) = maxk∈K

{
f∗
[k](x)

}
= c0,

which implies:

f∗
[k](x) ∈ Ck for all k < k0

f∗
[k0]

(x) = c0 (4)

f∗
[k](x) = 0 for all k > k0. (5)

Now, let us prove by contradiction that x ∈ X[k0]. If we suppose that x ̸∈

X[k0], then there would exist k1 ̸= k0 such that x ∈ X[k1]. We distinguish two

subcases: Subcase 2.a) If k1 > k0 this would imply that f∗
[k1]

(x) > 0 which

contradicts (5). Subcase 2.b) If k1 < k0 this would imply that f∗
[k0]

(x) = 0250

which contradicts (4). Thus, x ∈ X[k0]. More specifically, x ∈ Xc0 ⊂ X[k0] since

f∗
[k0]

(x) = c0.

4. Hierarchical sequencing with incremental CNNs

The theoretical results of Section 3 are based on perfect incremental clas-

sifiers (100% accuracy). However, in real life we have good, but imperfect,255

classifiers as is the case of convolutional neural networks (CNN). The objective

of this section is to design an effective algorithm for class incremental learn-

ing. This algorithm will use CNNs and will be based on the task sequencing

summarized in Proposition 2.

Let us define the incremental data set up to group k as D[k] = DC1
∪. . .∪DCk

,260

where DCk
= D(k−1)L+1 ∪ . . . ∪ DkL, for any k ∈ K. For any given c ∈ C, data

set Dc ⊂ Xc ×Yc contains data pairs of class c, i.e., Dc = {(x(i), y(i)}i∈I , where

x(i) is the i-th example and y(i) is the corresponding class and I = {1, . . . , I}

(we are assuming that the number data pairs is the same in all the classes to

lightening the notation).265

14

Definition 7 (Incremental CNN). Given any k ∈ K, an incremental CNN for

task T[k](X , C), corresponds to a CNN f[k](x; θk) : X → [0, 1]L+1 such that:

f[k](x; θ) = gk(Φk(x, θk1), θk2),

where Φk is the convolutional base, Φk(x, θk1) : Rn → Rm, function gk is a mul-

ticlass classifier, gk(y, θk2) : Rm → [0, 1]L+1 and vector θ = (θk1, θk2) accounts

for all the trainable parameters.

Algorithm 1 (Hierarchical sequencing with incremental CNNs).

• Objective: To perform hierarchical sequencing by using incremental CNNs.270

• Input:

1) A set of groups of classes indexed by k ∈ K, a set of incremental data

sets {D[k]}k∈K. The number of classes per group is L and the total

number of classes is C = KL. Select a constant threshold vector

γ = (γ1, . . . , γC) ∈ (0.5, 1)C .275

2) A set of incremental CNNs {f[k](x; θk)}k∈K, where θk is the initial

vector of weights (notice that data set D[k] is the training set for f[k]).

The output of each incremental CNN is a vector of logits in RL+1.

Exception: The output of the first incremental CNN has dimension

L (in this case there is not local class 0 for the previous classes).280

• Output: A multiclass classifier fγ : X → C, based on the set of optimal

incremental CNNs,
{
f[k](x; θ

∗
k)
}
k∈K .

• Steps:

1) Train the CNNs. For the incremental steps k = 1, . . . ,K :

a) Relabel the data of D[k] by using the local labels [0 : L]:285

i) Case k = 1. Use local labels [1 : L] for classes in group C1
(no local label 0 is used in this case).

ii) Case k > 1. Use local labels [1 : L] for classes in group Ck
and local label 0 for classes in C1 ∪ . . . ∪ Ck−1.

15

b) Train the kth incremental CNN to obtain θ∗k, by using the cross-290

entropy loss and D[k] as training data, with balanced batches

(the same number of images per local label: 0, 1, .., L).

2) Define the multiclass classifier fγ as follows:

a) Compute the vector of estimated probabilities ŷ(x) as follows.

Given any x ∈ X :295

i) For each group k ∈ K, set the local vector of logits z[k](x) ∈

RL:

z[k](x) =
(
[f[k](x; θ

∗
k)]j

)L+1

j=2
.

Notice that the first component (j = 1) is not used here since

it corresponds to the local class 0.

ii) Compute the vectors of local probabilities

ŷ[k](x) = softmax
(
z[k](x)

)
for all k ∈ K. (6)

Notice that each component [ŷ[k](x)]c is an estimation of

P
(
x ∈ Xc

)
, for any class c ∈ Ck.

iii) Set the vector of estimated probabilities ŷ(x) =
(
ŷ[k](x)

)
k∈K ∈300

[0, 1]C .

b) Define the set of candidate classes for x as Cγ(x) = {c | ŷc(x) ≥ γc} ,

for a given threshold vector γ and a data pair (x, y) ∈ D.

c) Define the multiclass classifier:

fγ(x) =

 max Cγ(x) if Cγ(x) ̸= ∅

argmaxc∈C {ŷc(x)} if Cγ(x) = ∅.
(7)

In the the previous algorithm notice that:305

• In Definition 6 we have seen that the output of a perfect incremental

classifier is 0 or c ∈ C, the predicted global label. In contrast, in Algorithm

16

1 the predicted label given by the CNN is formatted as a one-hot vector.

Furthermore, this label is local and is translated into the corresponding

global label by using vector ŷ(x), set at Step 2.a.ii).310

• The components of vector ŷ(x) are in the interval [0, 1] in contrast with

the pure binary outputs of perfect incremental classifiers. For this reason,

in Step 2.b) we use the vector of thresholds γ to select the components of

ŷ(x) which are close enough to 1.

• Equation (7) adapts the hierarchical sequencing given by equation (2) and315

intended for a perfect incremental classifier, for the case of an imperfect

incremental classifier.

4.1. Fast incremental learning by transfer learning

The objective of this section is to show how Algorithm 1 can be accelerated

by means of transfer learning (TL), in order to gain efficiency. Let us call it

Algorithm 1-TL. Transfer learning is the improvement of learning in a new task

through the transfer of knowledge from a related task that has already been

learned (Zhuang et al., 2021). A popular transfer learning approach in artificial

vision corresponds to the use of a pretrained convolutional networks (pre-CNN)

to set a new convolutional networks (new-CNN). In any CNN two parts are

considered: the convolutional base, a series of convolutional and pooling layers,

followed by a densely connected classifier. The simplest transfer learning ap-

proach, the so called feature extraction, consist of using the convolutional base

of a pre-CNN as the convolutional base of the new-CNN. Then, in the new-CNN

the parameters of the convolution base remain frozen and only the parameters

of the densely connected classifier are trained (Chollet, 2017). Specifically, in

Algorithm 1-TL we use the following incremental CNNs:

f[k](x; θk2) = gk(Φ(x), θk2) for all k ∈ K,

where Φ(x) is the convolutional base imported from a pre-CNN.

Algorithm 1-TL has some advantages compared to Algorithm 1:320

17

• It allows for a simpler and faster training of the incremental CNNs, since

only the densely connected classifier is trained.

• Additionally, one can run the pretrained convolutional base over the full

training data set, record the feature vectors (one per image) and then use

them as the input data to train the densely connected classifier. This325

approach is fast since it only requires to run the convolutional base once

for every input image and the convolutional base is the most expensive

part of the CNN (Chollet, 2017).

• The catastrophic forgetting is thus avoided, since each densely connected

classifier is trained only once and later used with the same convolutional330

base used at training time. However, even without catastrophic forgetting,

we observe a drop of accuracy in our approach compared to the classical

non incremental approach. As we will see in our experiments, this is

mainly due to the limited number of exemplars of already learned classes

used in the learning process of new classes (storage constraints).335

• The overall performance of the multiclass classifier fγ depends on the per-

formance of the pretrained CNN as we will see in the experiments. There-

fore, it is likely that this approach will benefit from future improvements

on pretrained CNNs.

• The output of Algorithm 1 is a multiclass classifier fγ , based on a set of

incremental CNNs f[k] (as many as incremental steps). In contrast, in

Algorithm 1-TL, this set can be merged into a single CNN by using the

common convolutional base in all the incremental CNNs. In the output

of this single CNN, say ŷ(x), the common convolutional base is followed

by the densely connected classifiers stacked in a vector, that is, ŷ(x) =(
qk(x)

)
k∈K, where

qk(x) =
(
[gk(Φ(x), θ

∗
k2]j

)L+1

j=2
.

In summary, the output of Algorithm 1-TL is a multiclass classifier fγ340

based on a single CNN.

18

The disadvantage of freezing the convolutional base is some potential accu-

racy loss. It is possible that by also training the pretrained convolutional base

with the incremental data, one would obtain a feature extractor better adapted

to the user classes, which in turn could improve the overall accuracy. Nonethe-345

less, in this paper we will use a frozen convolutional base, knowing that there is

room for future research in this question.

So far we have gained training speed by freezing the convolutional base. In

the architecture of the fully connected classifier there is also room to accelerate

the training. For example, the use of linear classifiers allows for a simpler an350

faster training compared to nonlinear classifiers. In this paper we will concen-

trate on linear classifiers since they are fast to train and can give good results

as we will see in the experiments.

4.2. Threshold optimization

The accuracy of the multiclass classifier fγ computed by Algorithm 1 or355

Algorithm 1-TL depends on the threshold vector γ, which is set by the user

heuristically. A more convenient way would be to look for an optimal γ∗, which

would minimize the classification error that can be attained by the family of

classifiers {fγ} for all suitable γ. This can be done by the following algorithm.

Algorithm 2 (Threshold optimization).360

• Objective: To obtain an optimal multiclass classifier fγ∗(x).

• Input:

1) A set of classes indexed by c ∈ C, the last incremental data set D[K],

which accounts for all the training data available at the last step K

of Algorith 1.365

2) A box of suitable γ, say, B = [0.5, 1]C , that bounds the threshold

vector γ = (γ1, . . . , γC).

3) A set of optimal incremental CNNs, that is,
{
f[k](x; θ

∗
k)
}
k∈K (ob-

tained by Algorithm 1).

19

• Output: An optimal multiclass classifier fγ∗ : X → C, where γ∗ is the370

optimal threshold vector.

• Steps:

1) Define the multiclass classifier fγ (see Step 2 of Algorithm 1).

2) Define the error function E(γ) : B → [0, 1] as follows:

E(γ) = 1− 1

N

∑
(x,y)∈D

[
fγ(x) = y

]
, (8)

where [·] is the Iverson bracket ([P] = 1 if P is true and [P] = 0,

otherwise).375

3) Solve the following threshold optimization problem:

γ∗ = argminγ∈B E(γ),

which defines an optimal multiclass classifier fγ∗(x).

Notice that:

• This threshold optimization has to be performed after training the set of

incremental CNNs of Algorithm 1 or 1-TL and by using the training data.

• The error function E(γ) in (8) is highly complex since it is based on the380

Iverson bracket and fγ(x). Thus, in order to solve the threshold optimiza-

tion problem one can use Powell’s method (Powell, 1964) which does not

require to use derivatives and can consider box constraints.

• Powell’s method gives a local optimizer. For this reason one can try and

compare different initial points, as for example γ0 = 0.75(1, 1, . . . , 1), the385

center of the box B or, also, a random γ0 from the box.

4.3. The proposed method: HILAND

In this section we summarize the proposed method, HILAND (Hierarchical

Incremental Learning Appending Naive Discriminators), which corresponds to

run Algorithm 1-TL followed by Algorithm 2, such that, at each incremental390

20

step of Algorithm 1-TL, only a reduced number of exemplars of already learned

classes is stored. Our source code is publicly available online1.

The HILAND method qualifies as a class incremental learning (CIL) algo-

rithm since:

1) It provides the multiclass classifier fγ∗ that is trainable from a sequence395

of data batches in which different classes occur at different batches.

2) The multiclass classifier fγ∗ is competitive for the classes observed so far

at any time.

3) The computational requirements and memory footprint of the HILAND

method grow very slowly with respect to the number of classes seen so far,400

as we explain below.

HILAND is a CIL method of type replay, since it stores a reduced number of

exemplars in raw format of already learned classes. To alleviate forgetting, these

exemplars are replayed while learning new classes by means of the incremental

data sets D[k] (see Algorithm 1). The HILAND method stores the same number405

of exemplars per class. Although the default selection method for these exem-

plars is random sampling, other selection method can be used as for example

herding (Rebuffi et al., 2017). In summary, the HILAND method corresponds

to run Algorithm 1-TL followed by Algorithm 2, where, at each incremental

step, only a reduced number of exemplars of already learned classes is stored.410

5. Experiments

We will test two versions of the HILANDmethod: The first version, HILAND-

I, corresponds to the pure HILAND method as described in Section 4.3. The

second version, HILAND-II, corresponds to the HILAND method with the mod-

ification described in Algorithm 1.b (see Section 5.2 for details).415

1https://github.com/capo-urjc/HILAND

21

5.1. Testing HILAND-I

In this section we describe the experiments performed to evaluate HILAND-I

and analyze their results. Our code has been implemented in PyTorch (Paszke

et al., 2019) 1.7.1 and we have used the following CNNs from the PyTorch

library: VGG-16, Densenet-161, Inception-v3 and ResNet-34 (all of them pre-420

trained on ImageNet). The experiments have been conducted on a Intel Xeon

E5-2698v4 CPU and a NVIDIA Tesla V100 GPU with 32 GB of RAM. We have

run all the experiments ten times with different class orders and have reported

average values, according to the experimental design presented in (Rebuffi et al.,

2017). In order to reduce the required computational time, in the context of425

transfer learning, we have used the pretrained convolutional base, out-of-the-

box as provided by the PyTorch library. That is, we have used a saved network

that was previously trained on a large data set (ImageNet in this case). Then,

we have run the pretrained convolutional base over the full training data set,

recorded the feature vectors (one per image) and used them as the input data430

to train the densely connected classifier. Notice that in all of the following ex-

periments we use the transfer learning/pretraining described in this paragraph.

5.1.1. Experiment 1: Testing Algorithm 1-TL

In this experiment, we perform two small tests to illustrate the use of Algo-

rithm 1-TL based on the FashionMNIST data set (Xiao et al., 2017). This data435

set consists of 28x28 pixel gray scale images of clothing items grouped into 10

classes. Each class consists of 6000 training images and 1000 test images.

In Test 1 the FashionMNIST classification problem is solved in a non incre-

mental setting by means of a multiclass CNN with a pretrained convolutional

base combined with a multiclass linear classifier (softmax output). That is, we440

use a pretrained VGG-16 network (Simonyan & Zisserman, 2015) as the fea-

ture extractor and a fully connected network (FCN) to solve the classification

problem. The input and output dimensions of the FCN are 25088 and 10, re-

spectively. In the context of transfer learning, only the FCN is trained (250,890

training parameters). We use the stochastic gradient descent (SGD) with the445

22

following training parameters: Batch size, 200 images; learning rate, 0.01; mo-

mentum parameter, 0.9. After 8550 SGD iterations the multiclass CNN attains

a test accuracy of 92.29% (training time 104 seconds).

In Test 2 the same classification problem is solved in an incremental setting

by Algorithm 1-TL, adding one single class at each incremental step. That450

is, in Algorithm 1-TL, we consider 10 groups of classes with one class each

(L = 1,K = C = 10). In each incremental CNN, the pretrained convolutional

base (VGG-16) is frozen and combined with a binary linear classifier (sigmoid

output). The linear classifier corresponds to a FCN whose input and output

dimensions are 25088 and 1, respectively. In the context of transfer learning,455

only the FCN is trained and we use the SGD method with the same tuning

parameters as in Test 1 (the total number of training parameters is the same

as in Test 1). However, we consider an increasing number of iterations for

each incremental CNN f[k] since the size of each incremental data set D[k] also

increases with k. Specifically, we use 200+150k SGD iterations to train f[k] (k =460

1, 2, ...), which in total amounts to 8550 SGD iterations to learn the ten classes

incrementally (training time 155 seconds). All the thresholds γc are set to 0.5.

The resulting multiclass classifier fγ attains a test accuracy of 90.41%. Notice

that in this example the incremental CNNs are binary classifiers. Thus, in the

first incremental step of Algorithm 1-TL, in order to have a binary classification465

problem, we have to consider simultaneously the global classes 1 and 2 (with

local labels 0 and 1). In the second incremental step we have to consider the

global class 3 (with local label 1) and the global classes 1 and 2 (with local label

0), and so on.

5.1.2. Experiment 2: Testing Algorithm 1-TL under data reduction470

The objective of this experiment is to show the impact of data reduction in

Algorithm 1-TL. In Experiment 1 we have seen that Algorithm 1-TL obtains a

test accuracy of 90.41% when solving the FashionMNIST classification problem,

by using the full training set (60,000 exemplars). This accuracy drops to 81.77%

after limiting the total number of stored exemplars to N = 2000. More specifi-475

23

Table 1: Results on FashionMNIST.

Experiment Algorithm Accuracy (%) Training

time (s)

1 Multiclass CNN-TL 92.29 104

1 Alg. 1-TL 90.41 155

2 Alg. 1-TL + Data reduction 81.77 44

3 Alg. 1-TL + Data reduction + Alg. 2 84.67 44

(HILAND-I method)

cally, in Algorithm 1-TL, just before learning the kth class, N/(k−1) exemplars

of each already learned class are randomly selected and used for training. The

rest of examples are dismissed. On the other hand, all the available exemplars

of the current class, the kth one, are used for training (6000 exemplars). In

this experiment, we use the SGD method with the same tuning parameters as480

in Test 2. However, we consider a constant number of iterations to train each

incremental CNN f[k] since the size of each incremental data set D[k] is also con-

stant (due to data reduction). Specifically, we use 350 SGD iterations to train

each incremental CNN which in total amounts to 3150 SGD iterations (training

time 44 seconds).485

5.1.3. Experiment 3: Testing the HILAND-I method

In this experiment, we test the HILAND-I method. As already pointed

out, the HILAND-I method corresponds to run Algorithm 1-TL followed by

Algorithm 2. Furthermore, at each incremental step of Algorithm 1-TL, only

a reduced number of exemplars of already learned classes is stored (data re-490

duction). In Experiment 2 we have seen that Algorithm 1-TL obtains a test

accuracy of 81.77% when solving the FashionMNIST classification problem, by

using a reduced training set (2000 exemplars). This accuracy rises up to 84.67%

if one optimizes the vector of thresholds γ by Algorithm 2 (after training the

neural network by Algorithm 1-TL). In Algorithm 2 we have used: the bounding495

box B = [0.5, 1]C , a random initial vector γ0 from the bounding box and the

24

Powell’s optimization method 2. For the SGD method, we have used the same

tuning parameters as in Experiment 2.

Table 1 summarizes the results of Experiments 1 to 3. In Experiment 1,

we observe that both approaches, non incremental (multiclass CNN-TL) and500

incremental (Alg. 1-TL) achieve close accuracies. Experiment 2 shows that

data reduction has the largest impact to worsen the accuracy. Experiment

3 shows that optimizing the threshold vector (Alg. 2) has a relevant impact

to improve the accuracy. In summary, for the FashionMNIST data set, the

HILAND-I method attains an overall accuracy of 84.67% compared to 92.29%,505

the upper bound given by the non incremental counterpart.

5.2. Testing HILAND-II

In this section we introduce the HILAND-II method which, in our prelimi-

nary tests, has obtained better accuracy results than the HILAND-I method for

large multiclass classification problems (CIFAR-100 and CUB-200). HILAND-510

II is nothing but HILAND-I based on the following Algorithm 1.b, a second

version of Algorithm 1. Notice that in the following algorithm we only describe

the step that has has been modified in Algorithm 1 (Step 2.a).

Algorithm 1.b

• Steps:515

2) Define the multiclass classifier fγ as follows:

a) Compute the vector of estimated probabilities ŷ(x) as follows.

Given any x ∈ X :

i) For each group k ∈ K, set the local vector of logits z[k](x) ∈

RL:

z[k](x) =
(
[f[k](x; θ

∗
k)]j

)L+1

j=2
.

2Implemented in the function scipy.optimize.minimize from the Scipy library, version

1.6.1 (Virtanen et al., 2020).

25

ii) Set the global vector of logits z(x) =
(
z[k](x)

)
k∈K ∈ RC .

iii) Compute the vector of global probabilities

ŷ(x) = softmax
(
z(x)

)
, (9)

where each component ŷc(x) is an estimation of P
(
x ∈ Xc

)
,520

for any class c ∈ C.

Notice that the main difference between Algorithms 1 and 1.b is on the use of

the softmax function in the definition of the multiclass classifier. Specifically,

Algorithm 1 applies the softmax function to each local vector of logits z[k](x)

(equation (6)). In contrast, Algorithm 1.b applies the softmax function to the525

global vector of logits z(x) (equation (9)).

5.2.1. Experiment 4: Comparing HILAND-II with state-of-the-art methods on

CIFAR-100

The objective of this experiment is to compare the HILAND-II method with

two state-of-the-art methods, namely iCaRL (Rebuffi et al., 2017) and BiC (Wu530

et al., 2019), which have been introduced in Section 1. The data set employed

is CIFAR-100 (Krizhevsky, 2009). This data set contains 100 classes with 600

RGB images each, 500 for training and 100 for testing. Each image has a size of

32× 32 pixels. iCaRL, and BiC use a ResNet-32 (see (He et al., 2016)), which

is trained from scratch in these methods. However, in HILAND-II, which is535

based on transfer learning, we have used a pretrained ResNet-34 (there is not a

pretrained ResNet-32 in the official PyTorch library).

These three methods are used to solve the CIFAR-100 classification problem

in an incremental setting, adding a group of ten classes at each incremental step

(L = K = 10, C = 100). Following (Rebuffi et al., 2017), we run all the experi-540

ments ten times with different class orders and report average values. We also

follow the benchmark protocol proposed in (Rebuffi et al., 2017): For a given mul-

ticlass data set, the classes are arranged in a fixed random order. Each method

is then trained in a class-incremental way on the available training data. After

each group of classes, the resulting classifier is evaluated on the test part data545

26

10 20 30 40 50 60 70 80 90 100
Number of classes

40

50

60

70

80

90

100
Ac

cu
ra

cy
 (%

)
BiC
iCaRL
HILAND-II
Upper bound

Figure 3: Experiment 4 - Comparison between HILAND-I and state-of-the-art methods on

CIFAR-100. The ‘Upper bound’ corresponds to the accuracy obtained by the non incremental

multiclass CNN.

of the data set, considering only those classes that have already been trained.

The result of the evaluation are depicted as curves of the classification accuracy

values after each group of classes (see Figure 3). We also report their average

values, called average incremental accuracy (AIA) (Rebuffi et al., 2017) (see

Table 2). As an upper bound to the final accuracy after incrementally learning550

the 100 classes, the CIFAR-100 classification problem was also solved in (Rebuffi

et al., 2017) by means of a multiclass CNN with convolutional base (ResNet-32)

combined with a multiclass linear classifier (non incremental setting).

In Figure 3 and Table 2 we have the results of the benchmark protocol for

iCaRL and BiC as reported in (Rebuffi et al., 2017) and (Wu et al., 2019), re-555

spectively. The HILAND-II results have been obtained by following the same

benchmark protocol. However, in contrast with the other two methods, only

the linear FCN is trained in the context of transfer learning. The SGD method

is used with the following training parameters: Batch size, 200 images; learning

rate, 0.01; momentum parameter, 0.9; SGD iterations, 350 to train each incre-560

27

Table 2: Experiment 4 - Comparison between HILAND-II and state-of-the-art methods on

CIFAR-100. ‘Accuracy’ reports the final accuracy after learning the 100 classes. ‘AIA’ stands

for Average Incremental Accuracy. ‘Epochs’ reports the number of epochs per training step.

The ‘Upper bound’ corresponds to the accuracy obtained by the non incremental multiclass

CNN.

Approach Accuracy (%) AIA (%) Epochs

Upper bound 68.60 - -

HILAND-II 50.88 62.65 10

BiC 50.43 66.20 250

iCaRL 49.19 64.10 70

mental CNN which in total amounts to 3500 SGD iterations. In Algorithm 2 we

have used the bounding box B = [0.5, 1]C and a random initial vector γ0 from

the bounding box. The constant number of stored exemplars is N = 2000 for

iCaRL, BiC and HILAND-II.

Table 2 reports the accuracy results and the number of epochs at each train-565

ing step. One epoch corresponds to the 7000 images used at each training step:

2000 stored exemplars plus 10 classes with 500 images each. Compared with the

other methods, we have obtained similar accuracy results but with less training

epochs. Furthermore, the computing time per epoch is far less expensive in

HILAND-II since, in the context of transfer learning, every input image goes570

through the convolutional base only once (we train the linear classifiers with

feature vectors).

5.2.2. Experiment 5: Performance of the HILAND-II method with different

CNNs on CIFAR-100

In this experiment we analyze the influence of using different CNN archi-575

tectures on HILAND-II and CIFAR-100. We compare the results obtained

by HILAND-II based on the following pretrained CNNs: VGG-16, ResNet-

34, DenseNet-161 (Huang et al., 2017) and Inception-v3 (Szegedy et al., 2016).

To train them, we use the same SGD method and training parameters as in

28

10 20 30 40 50 60 70 80 90 100
Number of classes

40

50

60

70

80

90

100
Ac
cu
ra
cy
 (%

)
VGG-16
DenseNet-161
ResNet-34
Inception-v3

VGG-16 upper bound
DenseNet-161 upper bound
ResNet-34 upper bound
Inception-v3 upper bound

Figure 4: Experiment 5 - Performance of HILAND-II with different CNNs on CIFAR-100. The

‘Upper bound’ corresponds to the accuracy obtained by the corresponding non incremental

multiclass CNN.

Experiment 4.580

In Figure 4 and Table 3 we observe that the performance of HILAND-II is

very similar for the pair (DenseNet-161, VGG-16) and for the pair (ResNet-34,

Inception-v3). If we compare Figures 3 and 4, we observe that the accuracy

obtained by HILAND-II based on a pretrained DenseNet-161 or VGG-16 is

among the best results for the CIFAR-100 CIL problem. Finally, Figure 4 shows585

that the choice of the CNN has a significant influence on the performance of the

HILAND-II method. However, as illustrated in Figure 5 all the pretrained CNNs

exhibit a similar accuracy degradation between two consecutive incremental

steps.

5.2.3. Experiment 6: Comparing HILAND-II with state-of-the-art methods on590

CUB-200

The objective of this experiment is to compare the HILAND-II method with

three state-of-the-art methods, namely iCaRL (Rebuffi et al., 2017), FearNet

29

Table 3: Experiment 5 - Performance of HILAND-II with different CNNs on CIFAR-100.

‘Accuracy’ reports the final accuracy after learning the 100 classes. ‘AIA’ stands for Average

Incremental Accuracy. ‘Upper bound’ reports the accuracy obtained by the corresponding

non incremental multiclass CNN.

Pretrained Accuracy AIA Upper bound Training time

CNN (%) (%) (%) (s)

DenseNet-161 59.79 70.88 68.36 339

VGG-16 59.41 70.59 68.49 295

ResNet-34 50.88 62.65 61.78 213

Inception-v3 47.87 60.26 54.28 324

(Kemker & Kanan, 2018) and Xiang et al. (Xiang et al., 2019). The data set

employed is CUB-200 (Wah et al., 2011). This data set contains 11,788 images595

belonging to 200 classes of birds, 5,994 images for training and 5,794 for testing.

We use the same evaluation scheme proposed by Xiang et al. Finetuning

is performed on the backend ResNet-50 with the first 100 classes of the data

set. Then, the convolutional base of ResNet-50 is frozen to be used in the 10

incremental learning stages performed on the remaining 100 classes (i.e., only the600

linear classifiers are trained). We store 20 exemplars per class as in Experiment

4 (N = 4000).

The accuracy and AIA are calculated without taking into account the first

100 classes since Xiang et al. do not consider it an incremental stage. We

also run all the experiments ten times with different random class orders and605

report average values. Training, evaluation and hyperparameters follow the

same scheme described in the Section 5.2.1, but we train for 147 epochs. We have

also applied a learning rate decay with a factor of 0.1 after 55 SGD iterations.

In Figure 6 and Table 4 we have the accuracy results for iCaRL, FearNet and

Xiang’s method as reported in (Xiang et al., 2019). We observe that HILAND-610

II and Xiang’s method obtain similar results and clearly outperform iCarL and

FearNet.

30

10 20 30 40 50 60 70 80 90 100
Number of classes

0

2

4

6

8

10

12

14
Ac
cu
ra
cy
 d
iff
er
en

ce
 (%

)
VGG-16
DenseNet-161

ResNet-34
Inception-v3

Figure 5: Experiment 5 - Incremental accuracy difference for each pair of tasks for all backends

with HILAND-II.

100 110 120 130 140 150 160 170 180 190 200
Number of classes

30

40

50

60

70

80

Ac
cu

ra
cy

 (%
)

FearNet
iCaRL
HILAND-II
Xiang et al.
Upper bound

Figure 6: Experiment 6 - Comparison between HILAND-II and state-of-the-art methods on

CUB-200. The ‘Upper bound’ corresponds to the accuracy obtained by the non incremental

multiclass CNN.

31

Table 4: Experiment 6 - Comparison between HILAND-II and state-of-the-art methods on

CUB-200. ‘Accuracy’ reports the final accuracy after learning the 200 classes. ‘AIA’ stands

for Average Incremental Accuracy. The ‘Upper bound’ corresponds to the accuracy obtained

by the non incremental multiclass CNN.

Approach Accuracy (%) AIA (%)

Upper bound 56.77 -

iCaRL 41.90 50.50

FearNet 45.81 53.31

Xiang et al. 52.72 57.68

HILAND-II 51.31 58.95

Table 5: Experiment 7 - Performance of HILAND-II with different CNNs on CUB-200. ‘Ac-

curacy’ reports the final accuracy after learning the 200 classes. ‘AIA’ stands for Average

Incremental Accuracy. ‘Upper bound’ reports the accuracy obtained by the corresponding

non incremental multiclass CNN

Pretrained Accuracy AIA Upper bound Training time

CNN (%) (%) (%) (s)

DenseNet-161 59.14 66.22 69.64 2137

VGG-16 39.71 47.56 52.12 1552

ResNet-50 51.31 58.95 56.77 1454

Inception-v3 46.74 54.79 51.19 1662

5.2.4. Experiment 7 - Performance of HILAND-II with different CNNs on CUB-

200

In this experiment we analyze the influence of using different CNN architec-615

tures on HILAND-II and CUB-200 following the same training, testing and hy-

perparameters criteria used in Experiment 6. We compare the results obtained

by HILAND-II based on the following pretrained CNNs: VGG-16, ResNet-

50, DenseNet-161 and Inception-v3. In Figure 7 and Table 5 we observe that

DenseNet-161 obtains the best performance as observed in Experiment 5.620

32

100 110 120 130 140 150 160 170 180 190 200
Number of classes

40

50

60

70

80

90
Ac
cu
ra
cy
 (%

)
VGG-16
DenseNet-161
ResNet-50
Inception-v3

VGG-16 upper bound
DenseNet-161 upper bound
ResNet-34 upper bound
Inception-v3 upper bound

Figure 7: Experiment 7 - Performance of HILAND-II with different CNNs on CUB-200. The

‘Upper bound’ corresponds to the accuracy obtained by the corresponding non incremental

multiclass CNN.

6. Conclusion

In this paper we have addressed the Class Incremental Learning (CIL) prob-

lem. From a theoretical point of view, we have proved that any CIL task can

be sequenced into more simple incremental classification tasks by means of the

hierarchical sequencing, based on perfect incremental classifiers. This kind of625

classifiers can be trained sequentially and independently, which is well suited

for the CIL problem. From a practical point of view, we have adapted the pre-

vious theoretical results to design an effective CIL algorithm based on CNNs.

More specifically, we have proposed the HILAND method for image classifica-

tion, which combines the hierarchical sequencing with transfer learning (based630

on pretrained CNNs).

In our experiments, based on the FashionMNIST, CIFAR-100 and CUB-200

data sets, we have compared the HILAND method to state-of-the-art CIL al-

gorithms. In terms of accuracy we obtained similar results but with far less

33

training effort. We attribute this speedup to two factors. 1) Transfer learning:635

Under this approach, we do not retrain the pretrained convolutional base in the

whole learning process. Furthermore, the computing time per epoch is far less

expensive in HILAND by exploiting the so called feature extraction. That is,

prior to train the incremental linear classifiers, the whole data set goes through

the pretrained convolutional base only once to obtain the corresponding vectors640

of features, which are used repeatedly to train the incremental linear classifiers.

2) Hierarchical sequencing: By using this methodology, each incremental linear

classifier is trained only once, at the corresponding incremental stage. On the

other hand, in our experiments, we have also observed that the HILAND per-

formance is highly dependent on the pretrained CNN used as feature extractor.645

Furthermore, the accuracy values obtained by HILAND combined with some of

the state-of-the-art pretrained CNNs are among the best results for the CIFAR-

100 and CUB-200 CIL problems. Regarding future research, we will focus on

developing the HILAND method without storing old exemplars (the current

version of HILAND is a replay method).650

Acknowledgments: We thank the editor and reviewers for their construc-

tive and stimulating suggestions. This research has been supported by the Span-

ish Government research funding RTI2018-098743-B-I00 and RTI2018-094269-

B-I00 (MICINN/FEDER) and the Comunidad de Madrid research funding grant

Y2018/EMT-5062.655

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z. et al. (2015).

TensorFlow: Large-scale machine learning on heterogeneous systems. URL:

https://www.tensorflow.org/.

Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., & Tuytelaars, T.660

(2018). Memory aware synapses: Learning what (not) to forget. In V. Fer-

rari, M. Hebert, C. Sminchisescu, & Y. Weiss (Eds.), Computer Vision

34

https://www.tensorflow.org/

– ECCV 2018 (pp. 144–161). Cham: Springer International Publishing.

doi:10.1007/978-3-030-01219-9_9.

Bifet, A., Gavaldà, R., Holmes, G., & Pfahringer, B. (2018). Machine Learning665

for Data Streams: with Practical Examples in MOA. The MIT Press. doi:10.

7551/mitpress/10654.001.0001.

Chen, Z., & Liu, B. (2018). Lifelong machine learning, second edition. Synthesis

Lectures on Artificial Intelligence and Machine Learning , 12 , 1–207. doi:10.

2200/S00832ED1V01Y201802AIM037.670

Chollet, F. (2017). Deep Learning with Python. Manning.

Delange, M., Aljundi, R., Masana, M., Parisot, S., Jia, X. et al. (2021). A contin-

ual learning survey: Defying forgetting in classification tasks. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, (pp. 1–1). doi:10.1109/

TPAMI.2021.3057446.675

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,

Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adversarial nets.

In Proceedings of the 27th International Conference on Neural Information

Processing Systems - Volume 2 NIPS’14 (p. 2672–2680). MIT Press. doi:10.

5555/2969033.2969125.680

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for im-

age recognition. In 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR) (pp. 770–778). doi:10.1109/CVPR.2016.90.

Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely

connected convolutional networks. In 2017 IEEE Conference on Computer Vi-685

sion and Pattern Recognition (CVPR) (pp. 2261–2269). doi:10.1109/CVPR.

2017.243.

Kemker, R., & Kanan, C. (2018). Fearnet: Brain-inspired model for incremental

learning. In International Conference on Learning Representations.

35

http://dx.doi.org/10.1007/978-3-030-01219-9_9
http://dx.doi.org/10.7551/mitpress/10654.001.0001
http://dx.doi.org/10.7551/mitpress/10654.001.0001
http://dx.doi.org/10.7551/mitpress/10654.001.0001
http://dx.doi.org/10.2200/S00832ED1V01Y201802AIM037
http://dx.doi.org/10.2200/S00832ED1V01Y201802AIM037
http://dx.doi.org/10.2200/S00832ED1V01Y201802AIM037
http://dx.doi.org/10.1109/TPAMI.2021.3057446
http://dx.doi.org/10.1109/TPAMI.2021.3057446
http://dx.doi.org/10.1109/TPAMI.2021.3057446
http://dx.doi.org/10.5555/2969033.2969125
http://dx.doi.org/10.5555/2969033.2969125
http://dx.doi.org/10.5555/2969033.2969125
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/CVPR.2017.243
http://dx.doi.org/10.1109/CVPR.2017.243
http://dx.doi.org/10.1109/CVPR.2017.243

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu,690

A. A., Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., Hassabis,

D., Clopath, C., Kumaran, D., & Hadsell, R. (2017). Overcoming catas-

trophic forgetting in neural networks. Proceedings of the National Academy

of Sciences, 114 , 3521–3526. doi:10.1073/pnas.1611835114.

Krizhevsky, A. (2009). Learning multiple layers of features695

from tiny images. URL: https://www.cs.toronto.edu/~kriz/

learning-features-2009-TR.pdf.

Lee, S., Chang, K., & Baek, J.-G. (2021). Incremental learning using generative-

rehearsal strategy for fault detection and classification. Expert Systems with

Applications, 184 , 115477. doi:https://doi.org/10.1016/j.eswa.2021.700

115477.

Li, Z., & Hoiem, D. (2018). Learning without forgetting. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 40 , 2935–2947. doi:10.1109/

TPAMI.2017.2773081.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S. et al. (2016). Ssd: Single705

shot multibox detector. In B. Leibe, J. Matas, N. Sebe, & M. Welling (Eds.),

Computer Vision – ECCV 2016 (pp. 21–37). Cham: Springer International

Publishing. doi:10.1007/978-3-319-46448-0_2.

Lopez-Paz, D., & Ranzato, M. (2017). Gradient episodic memory for continual

learning. In Proceedings of the 31st International Conference on Neural In-710

formation Processing Systems NIPS’17 (p. 6470–6479). Red Hook, NY, USA:

Curran Associates Inc. doi:10.5555/3295222.3295393.

Lu, B.-L., & Ito, M. (1999). Task decomposition and module combination based

on class relations: a modular neural network for pattern classification. IEEE

Transactions on Neural Networks, 10 , 1244–1256. doi:10.1109/72.788664.715

Mallya, A., & Lazebnik, S. (2018). Packnet: Adding multiple tasks to a single

network by iterative pruning. In 2018 IEEE/CVF Conference on Computer

36

http://dx.doi.org/10.1073/pnas.1611835114
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2021.115477
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2021.115477
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2021.115477
http://dx.doi.org/10.1109/TPAMI.2017.2773081
http://dx.doi.org/10.1109/TPAMI.2017.2773081
http://dx.doi.org/10.1109/TPAMI.2017.2773081
http://dx.doi.org/10.1007/978-3-319-46448-0_2
http://dx.doi.org/10.5555/3295222.3295393
http://dx.doi.org/10.1109/72.788664

Vision and Pattern Recognition (pp. 7765–7773). doi:10.1109/CVPR.2018.

00810.

McCloskey, M., & Cohen, N. J. (1989). Catastrophic interference in connec-720

tionist networks: The sequential learning problem. Psychology of Learn-

ing and Motivation - Advances in Research and Theory , 24 , 109–165.

doi:10.1016/S0079-7421(08)60536-8.

Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., & Wermter, S. (2019). Contin-

ual lifelong learning with neural networks: A review. Neural Networks, 113 ,725

54–71. doi:10.1016/j.neunet.2019.01.012.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J. et al. (2019). Pytorch:

An imperative style, high-performance deep learning library. In H. Wallach,

H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, & R. Garnett (Eds.),

Advances in Neural Information Processing Systems 32 (pp. 8024–8035). Cur-730

ran Associates, Inc. volume 32. URL: https://proceedings.neurips.cc/

paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.

Powell, M. J. D. (1964). An efficient method for finding the minimum of a

function of several variables without calculating derivatives. The Computer

Journal , 7 , 155–162. doi:10.1093/comjnl/7.2.155.735

Rebuffi, S.-A., Kolesnikov, A., Sperl, G., & Lampert, C. H. (2017). iCaRL:

Incremental classifier and representation learning. In 2017 IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR) (pp. 5533–5542).

doi:10.1109/CVPR.2017.587.

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once:740

Unified, real-time object detection. In 2016 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR) (pp. 779–788). doi:10.1109/CVPR.

2016.91.

Serra, J., Suris, D., Miron, M., & Karatzoglou, A. (2018). Overcoming catas-

37

http://dx.doi.org/10.1109/CVPR.2018.00810
http://dx.doi.org/10.1109/CVPR.2018.00810
http://dx.doi.org/10.1109/CVPR.2018.00810
http://dx.doi.org/10.1016/S0079-7421(08)60536-8
http://dx.doi.org/10.1016/j.neunet.2019.01.012
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
http://dx.doi.org/10.1093/comjnl/7.2.155
http://dx.doi.org/10.1109/CVPR.2017.587
http://dx.doi.org/10.1109/CVPR.2016.91
http://dx.doi.org/10.1109/CVPR.2016.91
http://dx.doi.org/10.1109/CVPR.2016.91

trophic forgetting with hard attention to the task. In International Conference745

on Machine Learning (pp. 4548–4557). PMLR.

Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for

large-scale image recognition. arXiv:1409.1556.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking

the inception architecture for computer vision. In 2016 IEEE Conference on750

Computer Vision and Pattern Recognition (CVPR) (pp. 2818–2826). doi:10.

1109/CVPR.2016.308.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T. et al.

(2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in

Python. Nature Methods, 17 , 261–272. doi:10.1038/s41592-019-0686-2.755

Wah, C., Branson, S., Welinder, P., Perona, P., & Belongie, S. (2011). Technical

Report CNS-TR-2011-001 California Institute of Technology.

Wu, Y., Chen, Y., Wang, L., Ye, Y., Liu, Z. et al. (2019). Large scale incremental

learning. In 2019 IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR) (pp. 374–382). doi:10.1109/CVPR.2019.00046.760

Xiang, Y., Fu, Y., Ji, P., & Huang, H. (2019). Incremental learning using condi-

tional adversarial networks. In 2019 IEEE/CVF International Conference on

Computer Vision (ICCV) (pp. 6618–6627). doi:10.1109/ICCV.2019.00672.

Xiao, H., Rasul, K., & Vollgraf, R. (2017). Fashion-mnist: a novel image dataset

for benchmarking machine learning algorithms. arXiv:cs.LG/1708.07747.765

Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., & He,

Q. (2021). A comprehensive survey on transfer learning. Proceedings of the

IEEE , 109 , 43–76. doi:10.1109/JPROC.2020.3004555.

38

http://arxiv.org/abs/1409.1556
http://dx.doi.org/10.1109/CVPR.2016.308
http://dx.doi.org/10.1109/CVPR.2016.308
http://dx.doi.org/10.1109/CVPR.2016.308
http://dx.doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.1109/CVPR.2019.00046
http://dx.doi.org/10.1109/ICCV.2019.00672
http://arxiv.org/abs/cs.LG/1708.07747
http://dx.doi.org/10.1109/JPROC.2020.3004555

	Introduction
	Class static learning by task decomposition
	Class incremental learning by hierarchical sequencing
	Hierarchical sequencing

	Hierarchical sequencing with incremental CNNs
	Fast incremental learning by transfer learning
	Threshold optimization
	The proposed method: HILAND

	Experiments
	black Testing HILAND-I
	Experiment 1: Testing Algorithm 1-TL
	Experiment 2: Testing Algorithm 1-TL under data reduction
	Experiment 3: Testing the HILAND-I method

	black Testing HILAND-II
	Experiment 4: Comparing HILAND-II with state-of-the-art methods black on CIFAR-100
	Experiment 5: Performance of the HILAND-II method with different CNNs black on CIFAR-100
	Experiment 6: Comparing HILAND-II with state-of-the-art methods on CUB-200
	black Experiment 7 - Performance of HILAND-II with different CNNs on CUB-200

	Conclusion

