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Abstract. Human activity recognition is a challenging problem, where
deep learning methods are showing to be very efficient. In this paper we
propose the use of capsule networks. This type of networks have proved
to generalize better to novel viewpoints than convolutional neural net-
works. We show that the use of capsule networks into a straightforward
architecture, between a convolutional preprocessing stage to extract vi-
sual features and a header for carrying out the task, is able to attain
competitive results with spatio-temporal data without the use of any
kind of recurrent neural network. Moreover, an analysis of the obtained
results shows that our architecture is capable of learning the proper-
ties that encode the spatio-temporal dynamics of the movements that
characterize each activity.
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1 Introduction

Broadly speaking, Human Activity Recognition (HAR) is the task of assign-
ing the correct activity label at the end of a sequence of video frames. Attain-
ing a good HAR performance enables the development of many applications in
Human-Computer Interaction (HCI) [7] such as industrial machinery operating
without a dashboard, assisting elderly or people with disabilities in everyday
tasks [5] as well as at work or developing natural and immersive interfaces.

HAR presents many challenges. If the video sequence has been taken from
a single monocular camera it is frequent to have auto-occlusions, there is no
direct information of the depth dimension, and obviously it is necessary to rely
on computer vision techniques to extract the features out of each frame. On the
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other hand, when having multiple views another extra challenge is to match and
fuse all the information collected. Some devices provide a sequence of skeletons,
i.e. a tree representing a series of joints in the human body, in which each node
represents 2D or 3D coordinates of the corresponding joint (depending on the
device). In this case the challenge is to distinguish tasks that are similar when
the information provided by the image is missing, such as combing and waving.
Background information is usually irrelevant to the activity being performed.
Using 3D skeletons results in more robust models because all the background
information or illumination changes present in images are ignored. It is also a
less ambiguous representation than its 2D counterpart.

In this paper we present a capsule network (Capsnet) for HAR based on 3D
skeletons. As [17] claims, one of the drawbacks of capsule networks is that they
try to model every entity found in an image; thus, working on skeletons we get
over this problem. Specifically, we use Tree Structure Skeleton Image (TSSI) to
convert a sequence of 3D joint arrays into an image. Then, this image is fed into
the capsule network. Our hypothesis is that the benefits of capsule networks are
able to extract and relate the time dependencies from the TSSI without using
any kind of Recurrent Neural Network mechanisms such as Long-Short Term
Memories (LSTM) or Gated Recurrent Units (GRU).

2 Related Work

HAR is a field of research that has attracted great interest over the last decade.
Early approaches consist of hand-crafted features and classifiers trained to recog-
nize the activities. Among the variety of hand-crafted features proposed are the
camera motion corrected descriptors [21], saliency-aware matching kernels [14],
simplified Fisher kernel representations [25] or part-based multiple features [11].
However, due to the decreasing price of motion-capture devices in recent years,
and the rise of their availability [2], the accessibility to skeletal-based data has
increased. Thus, research in the field has recently shifted towards fully automatic
methods based on deep learning.

Skeleton-based Deep Learning HAR. Early works focused on the use
of recurrent neural networks (RNN) to model the long-term spatial and tem-
poral relationship between joints. Wang et al. [22] propose a two-stream RNN
architecture that analyzes both the contextual dependence in the time domain
and the spatial configuration of the skeletons to then fuse the result for action
recognition. Song et al. [20] employ a spatio-temporal attention model based
on LSTM networks to focus on the most relevant frames and joints for a given
action.

Given the success of convolutional neural networks in image-based tasks, they
have also been used in the HAR domain. Wang et al. [23] propose a convolution-
based architecture where they use Joint Trajectory Maps as encoding, represent-
ing the spatial configuration of the joints and their trajectory in three images
through color coding. The resulting maps graphically represent the joint tra-
jectory, motion direction, body parts and motion magnitude. Caetano et al. [4]
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propose an image encoding of the information regarding joint motion over time.
Unlike previous works, Núñez et al. [15] do not use a graphical representation of
the skeletons. In their work they apply a CNN directly on the 3D skeleton data
and use the obtained features to feed a LSTM layer.

The most recent works focus on modeling skeletons as graphs. Following this
representation, Yan et al. [24] applies a Graph Convolutional Neurnal Network
(GCN). They extend this representation to the temporal domain by linking joints
between consecutive skeletons. In this line, Huang et al. [9] presents a learneable
approach to capture body parts information. Their work manages to highlight
important body parts in the skeleton and combines this information with joint-
level information for activity recognition. Si et al. [19] propose a LSTM unit
that applies graph convolutions to work with graph-structured skeletal data.
They state that their approach is able to learn the co-occurrence relationship
between spatio-temporal features in addition to those features.

Capsule Networks for HAR. The idea of capsules was first proposed by
Hinton et al. [8], however the breakthrough is due to Sabour et al. [17] with their
trainable approach to these units. In their work they prove that capsule networks
are more robust to affine transformations than convolutional counterparts.

Algamdi et al. [1] builds up on the work of Sabour et al. to adapt it to the
HAR domain. To do so, they use a deeper CNN to create features from which the
capsules are created. This enables the extraction of more complex patterns as
the input of the model is a video sequence that includes unnecessary background
information for action recognition. Moreover, they implement a weight pooling
step on the previous features to reduce the number of created capsules. This
results in a reduction of the computational cost of this model.

Jayasundara et al. [10] apply capsule networks to estimate the optical flow
between pairs of images. They use three consecutive layers of capsules to calcu-
late the motion features that are then fed to an autoecoder network to retrieve
the final motion image, which is subsequently used for action recognition. The
authors remark that capsules are capable of preserving the structure of entities
and therefore they don’t need to use a multi-scale approach nor other additional
tools to estimate optical flow.

The previously discussed works apply capsule networks on RGB video frames
from action sequences. We take advantage of the similarity between the capsule
architecture and the CNNs and use an image representation of skeletal data as
input to our network. To the best of our knowledge, we are the first approach to
use capsule networks on image encoded skeletal data.

3 HAR Capsules

Capsule networks were proposed to solve the shortcomings of CNNs for image-
based problem as described in Section 2. In this work, the human activities are
defined by a sequence of joint positions. In order to apply a capsule network ar-
chitecture we encode the data into images following the Tree Structure Skeleton
Image (TSSI), introduced in [26].
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3.1 Sequence Cutting

The input data of our model is a sequence composed of skeletons, one skeleton per
video frame. Each skeleton consists of 25 joints where each joint is a position in a
three-dimensional space. Since not all activities last the same time, the sequences
will contain a variable number of skeletons. The first step to be carried out in the
preprocessing stage is creating sequences of fixed length. To this end, we create
sub-sequences form each sequence by selecting quasi-equally spaced skeletons.

We start by defining the number of sub-sequences that can be derived from

a sequence as b = |S|
l ; where |S| is the length of a sequence of skeletons and l is

the network input sequence length. Since the number of sub-sequences can be a
real value, the last sub-sequence will contain repeated skeletons from the other
sub-sequences.

The list of indices for each sub-sequence is the set I = {bs + i · bc}; where
s ∈ {1, . . . , bb+1c}, and i ∈ {0, . . . , l−1} for each s. Applying this list of indices
I to a sequence S generates the set of sub-sequences S′ = {Ji | i ∈ I, Ji ∈ S}.

3.2 Image Embedding

Capsule networks focus on extracting properties that represent entities from im-
ages and on putting them together to create the entities that represent the classes
sought in a classification problem. The first two layers of our capsule architec-
ture make use of convolutions for the aforementioned extraction. Therefore, to
use this type networks it is necessary to convert the skeletal data into images.
This problem has already been addressed in the HAR domain by approaches
that have had this same issue, such as CNNs.

In order to convert the three-dimensional positions of the joints into an image
representation we use the Tree Sctructure Skeleton Image codification [26]. It
starts with an arrangement of the joints along the columns of an image and
the skeletons along the rows. According to [26], this distribution ensures that
a convolution operation will only establish relationships between connected or
temporally adjacent joints. Since the position of each joint is three-dimensional,
three grayscale images are obtained, which are used as the channels of an image
representation of the sequence.

The arrangement that avoids unconnected joints in contiguous columns is
obtained by traversing the graph; i.e. the skeleton tree where the root node
is the spine joint. This ordering is applied to the joints of each skeleton in a
sequence, as shown in Figure 1.

Finally, values are normalized to the unit interval. Aditionally, for this task
we propose the use of a bone normalization and scaling process. First, we set
the origin point of each joint to their parent joint. Next, we normalize the length
of each bone. This process removes inter-subject variability from the data set
and makes this representation rotation and translation invariant. In addition,
it emphasizes the movement performed by a joint without depending on its
predecessors. After this normalization, all the bones of the skeleton share the
same motion range, a three-dimensional sphere.
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Fig. 1. TSSI encoding process. On the left, the skeleton graph where joints are the
numbered nodes. On the right, the result of the depth-first search on the skeleton
employed to encode the first column of the TSSI image. The color of each pixel is due
to (x, y, z) coordinates used as RBG channels.

3.3 Capsule Network

The architecture used in this work is similar to the one proposed in [17], and
depicted in Figure 2. It can be divided in the following components:

Base Feature Extraction. The input image is first processed by a convolu-
tional layer with 236 kernels of size 3 × 3 pixels, stride of 1 and ReLU activation.
The output of this layer is a set of 236 feature maps of 21 × 47 pixels.

Low Level Capsules. The next layer applies 18 groups of 11 convolutional
kernels of 13 × 13 pixels and stride 2 on the previous feature maps. The results
are 18 groups of 11 feature maps of size 5 × 18 pixels. Each group is split along
the rows and columns into 90 vectors of length 11, resulting a total of 1620
vectors in R11. Each one of those vectors di is then processed by the squash
function to rescale its module to the unit interval in a non-linear fashion,

squash(di) =
‖di‖2

1 + ‖di‖2
di
‖di‖

(1)

The result are denoted low level capsules ui ∈ [0, 1]11.
High Level Capsules. The 18 groups of low level capsules represent 18

patterns of motion throughout the image. In this architecture, those patterns
are used to establish part-whole relationships with the high level capsules. In
this work there is a high level capsule for each class in the data set.

First, the properties of each high level capsule are predicted from the low
level ones. This is done by a transformation matrix Wi,j of size 11 × 21 for
each pair of low level capsules and high level capsules. As a result we obtain a
predicted high-level capsule ûi. There are 11×21×1620×C trainable parameters
in this layer, where C is the number of classes of the data set.

After each capsule has been transformed we use the dynamic routing algo-
rithm proposed in [17] to cluster together the predictions and to create higher
level capsule properties. This clustering is done iteratively based on the similar-
ity between all the predictions for a high level capsule. The obtained values are
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Fig. 2. Diagram illustrating the different phases that compose the capsule network
presented in this work. First, a sequence of skeletons is encoded into a TSSI [26]
image. Then feature vectors are extracted and squashed in order to obtain low level
capsules. These capsules are transformed and clustered together to generate high level
capsules. Finally, the encoded image is reconstructed and the probability for each class
is obtained.

then processed by the squash function (1) to generate each high level capsule,
vj . The module ‖vj‖ of each high level capsule is used as its class probability.

Reconstruction Network. To regularize the training of the capsule net-
work we use a fully connected network to reconstruct the input image from the
high level capsules, as suggested in [17]. Only the high level capsule correspond-
ing to the true class is taken into account. This is done by setting all high level
capsules to zeros except the one corresponding to the true class. This network
has two hidden layers with sizes of 3072 and 6144, respectively.

Loss. The total loss of the architecture is computed from the loss of the
capsule network and the reconstruction network, Lcap and Lreco respectively. For
the capsule network, the margin loss proposed in [17] is used, with m+ = 0.7,
m− = 0.3 and λ = 2. For the reconstruction network, the loss is the mean
squared error between the input image and the reconstructed image. In order to
balance these two losses we use two trainable coefficients scap and sreco. These
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coefficients are also summed to the total loss to self-balance their influence as
detailed in [16]:

L = e−scapLcap + scap + e−srecoLreco + sreco (2)

4 Experiments

In this section we describe the data sets used for the evaluation of our proposal
and the setting of our experiments. We analyze the results obtained and perform
a comparison against works from the state of the art in skeleton based HAR.

The experiments were conducted on a Intel Xeon E5-2698v4, 2.20 GHz CPU
and a NVIDIA Tesla V100 GPU with 32 GB of RAM. We trained our network for
100 epochs with a learning rate of 10−5 using the Adam optimization algorithm
and batch size of 36. At epoch 50 we decreased the learning rate by a factor
of 0.1. All of the hyperparameters have been selected by a constrained random
search that ensured the best network accuracy on the validation phase of the
training.

4.1 Data Sets

The proposed architecture has been evaluated on two widely used activity recog-
nition data sets. The first one, NTU RGB+D [18], is a data set composed of
56880 sequences representing 60 actions performed by 40 subjects and captured
by Kinect V2 cameras from 80 viewpoints. The actions are captured simultane-
ously by 3 cameras. Each sequence is composed of a variable number of skeletons
and each skeleton is composed of 25 joints. For actions involving two subjects we
have only used the skeleton of the main actor, as described in [18]. The authors of
this data set propose two evaluation protocols. In the first protocol, 20 subjects
are used for training and another 20 for evaluation (Cross-Subject). The second
protocol uses the sequences captured by camera 2 and 3 for training and those
of camera 1 for evaluation (Cross-View). The second data set, NTU RGB+D
120 [12], is an extension of the previous set. The size of the data set increases
to 114480 sequences representing 120 actions performed by 106 subjects and
captured from 155 viewpoints. As before, the authors propose two evaluation
protocols: Cross-Subject and Cross-Setup. For the Cross-Subject protocol, 53
specific subjects should be used for training and 53 for evaluation. On the other
hand, for the Cross-Setup protocol, 16 setups are used for training and 16 setups
for evaluation.

4.2 Results and Discussion

The results obtained for the above data sets using their evaluation protocols,
together with state-of-the-art works are shown in Table 1. Our architecture is
not using either recurrent neurons nor graph neural network, and yet our results
are competitive with respect to the state of the art. The most similar proposal is
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Table 1. Results of the proposed architecture and state-of-the-art works. The Cross-
Subject (CS60) and Cross-View (CV60) protocols from the NTU RGB+D were used.
For the NTU RGB+D 120 the Cross-Subject (CS120) and Cross-Setup (CST120) pro-
tocols were used. These results are reported by their respective authors. The results of
the work marked with * are reported in [26].

Model CS60(%) CV60(%) CS120(%) CST120(%)

Deep RNN [18] 56.2 64.0 - -
HBRNN* [6] 59.1 64.0 - -
Deep P-LSTM [18] 62.9 70.2 - -
Trust Gate LSTM [13] 69.2 77.7 - -
TSSI [26] 73.1 76.5 - -
TSRJI [3] 73.3 80.3 65.5 59.7
SkeleMotion [4] 76.5 84.7 67.7 66.9

Ours 74.2 77.1 63.2 64.6

TSSI [26], which consist of a ResNet-50. Moreover, our results also outperform
works that include recurrent networks. We noticed a significant number of false
positives between actions that have a similar spatial configuration. In addition,
the network is also able to distinguish between actions where the subject per-
forms the same movements in a different order. This leads us to think that our
proposal is able to capture spatial-temporal relationships. However these similar
activities degrade the overall performance of the classifier.

In the proposed architecture, a fully connected network is used to reconstruct
the input image from the high level capsules generated by the capsule network.
The output capsule generated by the network for an input sequence contains the
properties that define the action performed in it. We can visualize its effect by
modifying the values of these properties and depicting the reconstructed skeleton
to see which characteristic of the subject’s movement each one encodes. We do
this modification by adding values from an interval [-0.25, 0.25] with a 0.1 step.
Figure 3 shows the result of modifying the values of one property of an output
capsule. This modified property characterizes the right and left forearms move-
ment. As the value of this property increases, the forearms movement becomes
wider.

5 Conclusions

In the present work, a capsule network architecture for activity recognition based
on skeletal data has been presented. The results of our proposal are better than
other works employing methods based on CNNs. In the analysis performed using
the reconstruction network, it can be observed that the capsule network is able
to isolate the properties that define the motion of the human body. This sug-
gests that this type of network has potential in the field of activity recognition
and it’s able to model spatio-temporal relationships between joints. To further
our research we intend to develop a new routing algorithm that models human
movement dynamics and to introduce attention mechanisms.
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Fig. 3. Reconstructed input skeleton modifying the third high level capsule property
of the action “take off jacket”. Wider limbs are the most affected by the previous
modification.
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15. Núñez, J.C., Cabido, R., Pantrigo, J.J., Montemayor, A.S., Vélez, J.F.: Convo-
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