
Two-phase semi-Lagrangian relaxation to solving the
uncapacitated distribution centers location problem for B2C

E-commerce

Huizhen Zhang∗ Cesar Beltran-Royo† Bo Wang‡ Ziying Zhang§¶

September 16, 2015

Abstract

In this paper, we develop a mixed integer programming model for determining uncapacitat-
ed distribution centers location (UDCL) for B2C E-commerce. Based on the distribution system
characteristics of B2C E-commerce companies, the impact of supply costs of multi-commodity
are considered in this model. Combining with the properties of the semi-Lagrangian relaxation
(SLR) dual problem in the UDCL case, a two-phase SLR algorithm with good convergency prop-
erty is furthermore developed for solving the UDCL problem. We have performed computational
experiments on 15 UDCL instances by using the mixed integer programming solver, CPLEX, and
algorithm two-phase SLR+CPLEX, respectively. The numerical results show that the two-phase
SLR can give better results in general in terms of solution quality and CPU time.

Key words: Uncapacitated distribution centers location; B2C E-commerce; Semi-Lagrangian
relaxation; Dual ascent algorithm

1 Introduction

The increase in competition and the swings in the economy in recent years are compelling B2C E-
commerce companies to reduce logistics cost and improve customer service. Depots, distribution
centers and customers are important members of a B2C E-commerce company. When the distribution
centers are constructed, the commodities will be shipped from the depots to the customers via the
distribution centers. The more the distribution centers are constructed, the better the customer service
are, but the greater the cost of constructing distribution centers will increase. If location-allocation
of the distribution centers are not appropriate, the service level will be reduced and logistics cost will
be increased. Appropriately-located distribution centers can not only reduce logistics cost but also
enhance service level and profits [20, 19]. Therefore, it is necessary for a B2C E-commerce company
to find the best plan to locate its distribution centers.

In the distribution system for B2C E-commerce companies, the establishment of distribution centers
needs some installing and operating cost, commodities not only need some transportation cost but also
need some supplying cost and turnover cost at depots and distribution centers, respectively. Thus, the
∗Corresponding author: zhzzywz@163.com, School of Management,University of Shanghai for Science and Technology,

Mail box 459, 516 Jungong Road, Shanghai 200093,China.
†Statistics and Operations Research, Rey Juan Carlos University, Madrid, Spain.
‡School of Management,University of Shanghai for Science and Technology
§School of Materials Engineering, Shanghai University of Engineering Science

1

distribution centers location problem involves how to select locations of distribution centers from the
potential candidates and how to transport commodities from the depots to customers via distribution
centers so that the total relevant cost is minimized [20].

Distribution centers location (DCL) is one of the practical application of facility location (FL) which
has been a well-known research topic in the operation research community [10, 16]. The challenge
of where to best locate facilities has attracted much attention and ever expanding family of models
has emerged. Facility location models can be broadly classified as continuous location models and
(mixed) integer programming models. Continuous location models was proposed in 1909 when Weber
first considered how to locate a single warehouse so as to minimize the total distance between it and
its customers [10]. Then several extended version of this problem were investigated in literatures,
such as multi-source Weber problem [10], the location problems of maximizing minimum distances,
problems with barriers, and so on. A rough classification of (mixed) integer programming models
can be given as follows: (a) capacitated models vs. uncapacitated models, (b) single-stage models vs.
multi-stage models [2, 13], (c) single-commodity models vs. multi-commodity models [12, 15], (d)
static models vs. dynamic models, (e) deterministic models vs. probabilistic models, (f) single-source
models vs. multiple-source models, (g) single-objective models vs. multi-objective models [8]. A
brief introduction and surveys of facility location models appear in [10].

Most of the facility location problems are NP-hard, and numerous heuristic, approximate [1, 14] and
exact algorithms for solving them have been discussed in literatures. Various heuristic algorithms have
the disadvantages of premature convergence and low search efficiency. In order to overcome the limi-
tation of a single heuristic algorithm, various hybrid heuristics were proposed to solve the FL problems
in recent years, for example, hybrid firely-genetic algorithm [18], iterated tabu search heuristic [9], La-
grangian heurisic and ant colony system [6], swarm intelligence based on sample average approxima-
tion [3]. Numerous exact algorithms for solving the FL problems usually combine branch-and-bound
search with some bounding techniques, for example, column generation and branch-and-price method
[11], branch-and-bound-and-cut algorithm [17]. Lagrangian relaxation is one of the most popular
bounding techniques and it has also been used to solve the FL problems [7, 21]. Recently, semi-
Lagrangian relaxation (SLR), an improved Lagrangian relaxation method, has been applied to solve
the FL problems by means of general purpose mixed integer programming solvers, as for example,
CPLEX [4, 5].

As far as we know, most of the (mixed) integer programming models presented in DCL literatures treat
assume given cost minimization as objective but without considering the supplying cost at depots, such
as handling cost, packing cost, and others. In practice, all of the activities associated with distributing
commodities at depots generate some cost, called supplying cost in this paper, which also impact
the location of the distribution centers. For the B2C e-commerce, the individual customers dispersed
around the nation/world require a great variety of commodities. In this case multi-commodity model
has to be proceeded. A multi-commodity, multi-stage and uncapacitated distribution centers location
(UDCL) model considering the supplying cost is presented in this paper, and some good theoretical
properties are investigated when semi-Lagrangian relaxation is applied to solve it.

The outline of this paper is as follows. In Section 2 we present a multi-product, multi-stage and
uncapacitated distribution centers location model for the B2C e-commerce. In Section 3 we first briefly
review the main properties of the SLR, then apply it to the UDCL model. In Section 4, in conjunction
with the properties of the SLR dual problem in the UDCL case, we derive a two-phase SLR algorithm.
In Section 5, the two-phase SLR algorithm is tested by solving a set of UDCL instances. Finally,
concluding remarks are given in Section 6.

2

Customers

Distribution

 Centers

Depots

Figure 1: Distribution network of a B2C E-commerce company

2 The uncapacitated distribution centers location (UDCL) problem for
B2C e-commerce

Consider the distribution network of a B2C E-commerce firm with a international/national presence,
and having several inventory depots attached to it. The firm distributes different commodities from
depots to its customers through a network of uncapacitated distribution centers, located in different
province. It is assumed that one depot can deliver commodities to any distribution center and one
customer can be served by one distribution center only. However, one distribution center can serve
more than one customer. To understand this problem easily, we can consult Figure 1.

This paper considers five kinds of costs generated by the distribution into the model: (1) Supplying
cost at each depot; (2) Transportation cost from the depots to the distribution centers; (3) Fixed cost of
installing and operating distribution centers; (4) Turnover cost of commodities at distribution centers;
(5)Transportation cost from the distribution centers to the customers. The total distribution cost is
not only related to the units of commodities transacted but also dependent on the locations of the
distribution centers and the allocation of customers.

Decision makers need to perform three tasks: (1) choose the building sites of the uncapacitated distri-
bution centers from the potential set; (2) allocate the customers to the selected distribution centers; (3)
determine the amount of commodities transported from each depot to each selected distribution center
but which can not exceed the supply of commodities. The result of the decision is required that the
demand of each customer should be satisfied and the total cost should be minimized.

In order to model the uncapacitated distribution centers location problem, the following notations for
the parameters are defined:

I = {i|i = 1, 2, · · · ,M}, set of commodity depots;
J = {j|j = 1, 2, · · · , N}, set of distribution center candidates;
K = {k|k = 1, 2, · · · , R}, set of customers;
L = {l|l = 1, 2, · · · , T}, set of commodity categories;
pil = the cost of supplying one unit of commodity l at depot i;
cijl = the cost of transporting one unit of commodity l from depot i to distribution center j;
gj = the fixed cost including installing and operating distribution center j;
tjkl = the cost of transporting one unit of commodity l from distribution center j to customer k;
dkl = the demands of customer k for commodity l;
hjl = the turnover cost of one unit of commodity l at the distribution center j;
Ail = the maximal supply of commodity l at depot i in the planning period;
xijl = the amout of commodity l transported from the depot i to the distribution center j.

3

For this problem, we need to select several distribution centers from the potential set J = {1, 2, · · · , N}
and allocate each customer k ∈ K to a single selected distribution center. We use the binary variables
yj and zjk to denote whether the distribution center j is selected or not and whether the distribution
center j serves customer k or not, respectively. That is,

yj =

{
1, if the distribution center j is selected,

0, otherwise.

zjk =

{
1, if the distribution center j serves customer k,

0, otherwise.

The model considers the minimization of the total relevant cost, subject to constraints on the supply of
each depot and the conservation of commodity flow at each distribution center.

f(x,y, z) =
∑
i∈I

∑
l∈L

pil
∑
j∈J

xijl +
∑
i∈I

∑
j∈J

∑
l∈L

cijlxijl

+
∑
j∈J

gjyj +
∑
j∈J

∑
l∈L

hjl
∑
i∈I

xijl +
∑
j∈J

∑
k∈K

∑
l∈L

tjkldklzjk
(1)

Minimize f(x,y, z) subjects to the following constraints:

∑
i∈I

xijl =
∑
k∈K

dklzjk, j ∈ J, l ∈ L (2)∑
j∈J

zjk = 1, k ∈ K (3)

∑
j∈J

xijl ≤ Ail, i ∈ I, l ∈ L (4)

zjk ≤ yj , j ∈ J, k ∈ K (5)

xijl ≥ 0, i ∈ I, j ∈ J, l ∈ L (6)

yj ∈ {0, 1}, j ∈ J (7)

zjk ∈ {0, 1}, j ∈ J, k ∈ K (8)

Equation (1) expresses the objective of minimizing the total cost of the whole distribution system.
The total cost consists of 5 parts, which are the cost of supplying commodities at depots, the cost
of shipping commodities from depots to distribution centers, the cost of fixed installing and operat-
ing distribution centers, commodity turnover cost at distribution centers and transportation cost from
distribution centers to customers. Equation (2) is the commodity flow conservation constrains which
ensure the total amount of commodity l ∈ L shipped from the depots to the distribution center j ∈ J
are equal to the amount shipped out from the distribution center j ∈ J . Constraints (3) guarantee only
one distribution center serves one customer. Constraints (4) take care of limited supply of commodity
l ∈ L at depot i ∈ I . Constraints (5) couple the location and the assignment decision.

4

3 Semi-Lagrangian relaxation and the UDCL problem

3.1 SLR concepts and properties

The concept of semi-Lagrangian relaxation was introduced in [4] and applied to the uncapacitated
facility location (UFL) problem in [5]. In this section, we briefly summarize the main results of these
two papers. Consider the following problem to be named “primal” henceforth:

z∗ = min
x

cTx (9)

s.t. Ax = b, (10)

x ∈ X ⊂ S ∩ Nn, (11)

where the components of A ∈ Rm × Rn, b ∈ Rm and c ∈ Rn are nonnegative. Furthermore S is a
polyhedral set, 0 ∈ X and the previous problem is feasible.

The semi-Lagrangian relaxation consists in substituting the constraint Ax = b by the equivalent pair
of constraints Ax ≤ b and Ax ≥ b, and then relaxing Ax ≥ b only. We thus obtain the SLR dual
problem

q∗ = max
u∈U

q(u), (12)

where U = Rm+ and q(u) is the semi-Lagrangian dual function defined as

q(u) = min
x

cTx+ uT (b−Ax) (13)

s.t. Ax ≤ b, (14)

x ∈ X. (15)

Note that to calculate q(u) we have to solve problem (13-15), which we call the oracle at u. Also note
that with our assumptions its feasible set is bounded. We also have that x = 0 is feasible to the oracle;
hence it has an optimal solution. q(u) is well-defined, but the minimizer in (13-15) is not necessarily
unique. With some abuse of notation, we write

x(u) = arg min
x
{cTx+ uT (b−Ax) | Ax ≤ b, x ∈ X}

to denote one such minimizer.

We denote X∗, U∗ and X(u) the set of optimal solutions of problem (9-11), (12) and (13-15), respec-
tively. We say that (x∗, u∗) is an optimal primal-dual point if u∗ ∈ int(U∗) and x∗ ∈ X(u∗) ∩ X∗.
Given two sets S1 and S2, its addition corresponds to S1 + S2 = {s1 + s2 : s1 ∈ S1 and s2 ∈ S2}.
For any set S, int(S) stands for its interior. Finally, given two vectors u and v, we will write u ≤ v to
mean that ui ≤ vi for each component i. Finally, for any scalar x, we define the negative part of x as

[x]− := −min{x, 0}

and its positive part as
[x]+ := max{x, 0}.

Theorem 1 [4] [5] The following statements hold.

1. q(u) is concave and b−Ax(u) is a subgradient at u.

2. q(u) is monotone and q(u′) ≥ q(u) if u′ ≥ u, with strict inequality if u′ > u and u′ 6∈ U∗.

5

3. U∗ + Rm+ = U∗; thus U∗ is an unbounded (convex) set.

4. If x(u) is such that Ax(u) = b, then u ∈ U∗ and x(u) ∈ X∗.

5. Conversely, if u ∈ int(U∗), then any x(u) ∈ X∗.

6. The SLR closes the duality gap for problem (9-11), that is, z∗ = q∗.

3.2 SLR applied to the UDCL problem

Following the ideas of the preceding section, we formulate the semi-Lagrangian relaxation of the
UDCL problem (1-8). We obtain the SLR dual problem

max
u∈U, v∈V

LSLR(u, v) (16)

and the dual function (note that, now, we keep the equality constraints (2) and (3) as inequalities)

LSLR(u, v) = min
x,y,z

L(u, v, x, y, z) (17)

s.t.
∑
i∈I

xijl ≤
∑
k∈K

dklzjk, j ∈ J, l ∈ L (18)∑
j∈J

zjk ≤ 1, k ∈ K (19)

(4)− (8) (20)

where the Lagrangian function is defined as usual

L(u, v, x, y, z) =
∑
i∈I

∑
l∈L

pil
∑
j∈J

xijl +
∑
i∈I

∑
j∈J

∑
l∈L

cijlxijl +
∑
j∈J

gjyj

+
∑
j∈J

∑
l∈L

hjl
∑
i∈I

xijl +
∑
j∈J

∑
k∈K

∑
l∈L

tjkldklzjk

+
∑
j∈J

∑
l∈L

ujl(
∑
k∈K

dklzjk −
∑
i∈I

xijl) +
∑
k∈K

vk(1−
∑
j∈J

zjk)

=
∑
i∈I

∑
j∈J

∑
l∈L

(pil + cijl + hjl − ujl)xijl +
∑
j∈J

gjyj

+
∑
j∈J

∑
k∈K

(
∑
l∈L

tjkldkl +
∑
l∈L

ujldkl − vk)zjk +
∑
k∈K

vk

As in the previous section, we denote (x(u, v), y(u, v), z(u, v)) an optimal point for the oracle (17-20)
and get the following theorem.

Theorem 2 (x(u, v), y(u, v), z(u, v)) is an optimal point of the oracle LSLR(u, v).

1. xijl(u, v) = 0 if pil + cijl + hjl − ujl ≥ 0;

2. pil + cijl + hjl − ujl ≥ 0 for all (i, j, l) (i ∈ I, j ∈ J, l ∈ L).

(a) For a given k ∈ K, if
∑

l∈L tjkldkl +
∑

l∈L ujldkl − vk ≥ 0, then zjk(u, v) = 0;

6

(b) For a given k ∈ K, if
∑

j∈J zjk(u, v) = 1, then

vk ≥ min
j∈J
{
∑
l∈L

tjkldkl +
∑
l∈L

ujldkl};

3. For a given k ∈ K, if
vk ≥ min

j∈J
{
∑
l∈L

tjkldkl +
∑
l∈L

ujldkl + gj},

then there exists an optimal oracle solution (x(u, v), y(u, v), z(u, v)) whit
∑

j∈J zjk(u, v) = 1.

Proof:

1. (By contradiction.) Suppose that there exists xi′j′l′(u, v) > 0 with pi′l′+ci′j′l′+hj′l′−uj′l′ ≥ 0
(i′ ∈ I, j′ ∈ J, l′ ∈ L). In this case, we can define a new feasible solution for the oracle
say (x̂(u, v), ŷ(u, v), ẑ(u, v)) which is equal to (x(u, v), y(u, v), z(u, v)) except for component
x̂i′j′l′(u, v). We set x̂i′j′l′(u, v) = 0. Thus,

(pi′l′ + ci′j′l′ + hj′l′ − uj′l′)x̂i′j′l′(u, v) ≤ (pi′l′ + ci′j′l′ + hj′l′ − uj′l′)xi′j′l′(u, v)

=⇒ L(u, v, x̂, ŷ, ẑ) ≤ L(u, v, x, y, z)
(21)

If pi′l′ + ci′j′l′ + hj′l′ − uj′l′ = 0, then L(u, v, x̂, ŷ, ẑ) = L(u, v, x, y, z), which implies that
(x̂(u, v), ŷ(u, v), ẑ(u, v)) is also the optimal solution of the oracle LSLR(u, v). If pi′l′ + ci′j′l′ +
hj′l′ − uj′l′ > 0, then we can conclude that L(u, v, x̂, ŷ, ẑ) < L(u, v, x, y, z). However, this
contradicts (x(u, v), y(u, v), z(u, v)), the optimal point of the oracle LSLR(u, v).

2. (a) Similar with the proof of the Theorem 2.1.

(b) Let us assume that vk0 < minj∈J{
∑

l∈L tjk0ldk0l +
∑

l∈L ujldk0l} for some k0 ∈ K and
see that contradicts

∑
j∈J zjk0(u, v) = 1. If vk0 < minj∈J{

∑
l∈L tjk0ldk0l+

∑
l∈L ujldk0l},

then
∑

l∈L tjk0ldk0l +
∑

l∈L ujldk0l − vk0 > 0 for all j ∈ J . Any optimal solution
(x(u, v), y(u, v), z(u, v)) is such that zjk0(u, v) = 0 by Theorem 2.2.(a). Hence, 0 =∑

j∈J zjk0(u, v) 6= 1.

3. Assume vk ≥ minj∈J{
∑

l∈L tjkldkl +
∑

l∈L ujldkl + gj} for a given k ∈ K. If there ex-
ists an optimal solution of the oracle such that

∑
j∈J zjk(u, v) = 1, then statement 3 hold.

Assume we have the oracle solution with
∑

j∈J zjk(u, v) = 0 for the given k. Let j′ be
such that

∑
l∈L tj′kldkl +

∑
l∈L uj′ldkl + gj′ = minj∈J{

∑
l∈L tjkldkl +

∑
l∈L ujldkl + gj}.

By hypothesis,
∑

l∈L tj′kldkl +
∑

l∈L uj′ldkl + gj′ − vk ≤ 0 and one can set zj′k = 1 and
yj′ = 1 without increasing the objective value. The modified solution is also optimal. Hence,
there exists an optimal oracle solution with

∑
j∈J zjk(u, v) = 1 for the given k where vk ≥

minj∈J{
∑

l∈L tjkldkl +
∑

l∈L ujldkl + gj}.

Note that the statement 2 of Theorem 2 can not always hold if pil + cijl + hjl − ujl < 0 for any
(i, j, l)(i ∈ I, j ∈ J, l ∈ L). For example, pi0l0 + ci0j0l0 + hj0l0 − uj0l0 = −5 < 0 and Ai0l0 = 10
for the given (i0, j0, l0)(i0 ∈ I, j0 ∈ J, l0 ∈ L), tj0k0l0dk0l0 + uj0l0dk0l0 − vk0 = 1 > 0 for the given
(j0, k0)(j0 ∈ J, k0 ∈ K), and dk0l0 = 4 and gj0 = 2. In this case, one can set xi0j0l0 = 4, yj0 = 1 and
zj0k0 = 1.

From Theorem 2, we can know that some xijl(u, v) and zjk(u, v) can be fixed to ”0” in advance if their
pil + cijl + hjl − ujl ≥ 0 and

∑
l∈L tjkldkl +

∑
l∈L ujldkl − vk ≥ 0. This operation, which reduces

7

the size of the oracle, is quite common in Lagrangian relaxation applied to combinatorial optimization.
There, using some appropriate argument, one fixes some of the oracle variables and obtains a reduced-
size oracle called the core problem. Usually we have (much) fewer variables xijl(u, v) and zjk(u, v) in
the core problem. Roughly speaking, if the size of the core problem is small enough, it will be possible
to solve it by an Integer Programming solver(e.g. CPLEX, etc.), and this is the main advantage of the
core problem.

In order to reduce the number of iterations and improve computational efficiency, one should initialize
and update multipliers v according to the value of u and vice versa by using the dual ascent algorithm
to solve the (16). Thus, initializing and updating the Lagrangian multipliers (u, v) are not an easy task
because they are interrelated. For the sake of convenience, in this paper we first set all of the multipliers
ujl = 0 for all j ∈ J and l ∈ L, and get the following dual problem (22) and core problem (23-27) by
fixing all of the variables xijl to ”0” because of pil + cijl + hjl − ujl ≥ 0(i ∈ I, j ∈ J, l ∈ L) . After
solving the dual problem (22) optimally, we use its results to initialize u and solve (16). That is, the
solution process is divided into two phases, we first solve dual problem (22),then solve dual problem
(16).

max
v∈V

L0SLR(v) (22)

and dual function

L0SLR(v) = min
y,z
L0(v, y, z) (23)

s.t.
∑
j∈J

zjk ≤ 1, k ∈ K (24)

zjk ≤ yj , j ∈ J, k ∈ K (25)

yj ∈ {0, 1}, j ∈ J (26)

zjk ∈ {0, 1}, j ∈ J, k ∈ K (27)

where
L0(v, y, z) =

∑
j∈J

gjyj +
∑
j∈J

∑
k∈K

(
∑
l∈L

tjkldkl − vk)zjk +
∑
k∈K

vk (28)

We denote (U∗, V ∗), V ∗0 , X(u, v) and X(v) the set of optimal solutions of problem (16), (22), (17-
20) and (23-27), respectively. For each (i, j, l)(i ∈ I , j ∈ J , l ∈ L), we define its costs as Fijl =
pil+cijl+hjl. For each customer k, we define its combined costs as Ck := minj∈J{

∑
l∈L tjkldkl+gj}

and its transportation cost from distribution center j as Tjk :=
∑

l∈L tjkldkl. The vector of combined
costs is thus C := (C1, · · · , CR). Furthermore, we sort costs Tjk for each customer k and Fijl for each
(j, l), and get the sorted costs

T 1
k ≤ T 2

k ≤ · · · ≤ T Nk , F1
jl ≤ F2

jl ≤ · · · ≤ FMjl .

The dual problem (22) and the oracle problem L0SLR(v) are similar with the uncapacitated facility
location (UFL) dual problem and oracle problem presented in [5]. The main results of the UFL oracle
problem are also applicable to the oracle problem L0SLR(v), which are summarized in Theorem 3.

Theorem 3 The following statements hold [5].

1. v ≥ C =⇒ v ∈ V ∗0 ;

8

2. v > C =⇒ v ∈ int(V ∗0);

3. If v ∈ int(V ∗0), then v ≥ T 1.

Corollary 1 If ujl ≥ FMjl for all (j, l) (j ∈ J , l ∈ L), and vk ≥ Ck + maxj∈J{
∑

l∈L ujldkl} for all
k ∈ K, then (u, v) ∈ (U∗, V ∗).

Proof: Assume ujl ≥ FMjl for all (j, l) (j ∈ J , l ∈ L), and vk ≥ Ck + maxj∈J{
∑

l∈L ujldkl} for all
k ∈ K. If there exists an optimal solution of the oracle such that

∑
i∈I xijl =

∑
k∈K dklzjk for all

j ∈ J and l ∈ L, and
∑

j∈J zjk = 1 for all k ∈ K, then, by Theorem 1, this solution is optimal for the
original problem (1-8). Otherwise, we have two exclusive cases:

1.
∑

i∈I xijl <
∑

k∈K dklzjk for some (j, l) and
∑

j∈J zjk = 1 for all k ∈ K. In this case, we
can increase the value of xijl for some (i, j, l) such that the modified solution (x, y, z) satisfies
constraints (2-8).

2.
∑

j∈J zjk = 0 for some k ∈ K. In this case, first let j′ be such that Ck =
∑

l∈L tj′kldkl + gj′ ,
and set zj′k = 1 and yj′ = 1. Then we can also increase the value of xijl for some (i, j, l) such
that the modified solution (x, y, z) satisfies constraints (2-8).

By hypothesis, pil+cijl+hjl−ujl ≤ 0 for all (i, j, l), and
∑

l∈L tjkldkl+
∑

l∈L ujldkl+gj−vk ≤ 0 for
all k ∈ {k|

∑
j∈J zjk = 0, k ∈ K}. Thus, the modified solution does not increase the objective value

and is also optimal. Hence, there exists an optimal oracle solution with
∑

i∈I xijl =
∑

k∈K dklzjk for
all (j, l) (j ∈ J , l ∈ L),

∑
j∈J zjk = 1 for all k ∈ K and (u, v) ∈ (U∗, V ∗).

Theorem 4 Let us consider ṽ ∈ V . If (y(ṽ), z(ṽ)) ∈ X(ṽ) then
∑

k∈K −[
∑

l∈L tjkldkl− ṽk]−+gj ≤
0 for all j ∈ J(y), where J(y) is the set of selected distribution centers, J(y) := {j ∈ J |yj = 1}.

Proof: (By contradiction) Let us assume that there exists j′ ∈ J(y) such that
∑

k∈K −[
∑

l∈L tj′kldkl−
ṽk]
− + gj′ > 0. In this case, we can define a new feasible solution (ŷ(ṽ), ẑ(ṽ)) which is equal

to (y(ṽ), z(ṽ)) except for component with j = j′, for these components, we set ŷj′(ṽ) = 0 and
ẑj′k(ṽ) = 0 for all k ∈ K. Thus

gj′ ŷj′(ṽ) +
∑
k∈K

(
∑
l∈L

tj′kldkl − ṽk)ẑj′k(ṽ) = 0

<
∑
k∈K
−[

∑
l∈L

tj′kldkl − ṽk]− + gj′

≤
∑
k∈K

(
∑
l∈L

tj′kldkl − ṽk)zj′k(ṽ) + gj′yj′(ṽ)

where the last inequality comes from the fact that (
∑

l∈L tj′kldkl − ṽk)zj′k(ṽ) ≥ −[
∑

l∈L tj′kldkl −
ṽk]
− for all k ∈ K, j ∈ J . This contradicts (y(ṽ), z(ṽ)) ∈ X(ṽ).

Theorem 5 Let us consider ṽ ∈ V . If (y(ṽ), z(ṽ)) ∈ X(ṽ) and there exists k′ ∈ K,
∑

j∈J zjk′(ṽ) =
1, then

ṽk′ ≥
∑
l∈L

tj′k′ldk′l = min
j∈J(y)

{
∑
l∈L

tjk′ldk′l}

where J(y) := {j ∈ J |yj = 1}, j′ is the closet open distribution center to client k(it may not be
unique).

9

Proof: (By contradiction) Let us assume that there exist k′′ ∈ K such that
∑

j∈J zjk′′(ṽ) = 1 and

ṽk′′ <
∑
l∈L

tj′k′′ldk′′l = min
j∈J(y)

{
∑
l∈L

tjk′′ldk′′l}

In this case we can define a new feasible solution for the oracle L0SLR(v), say (ŷ(ṽ), ẑ(ṽ)), which is
equal to (y(ṽ), z(ṽ)) except for components with k = k′′. For these components, we set ẑjk′′(ṽ) = 0
for all j ∈ J . Thus∑

j∈J(y)

(
∑
l∈L

tjk′′ldk′′l − ṽk′′)ẑjk′′(ṽ) = 0 <
∑
j∈J(y)

(
∑
l∈L

tjk′′ldk′′l − ṽk′′)zjk′′(ṽ)

Considering this inequality and the definition of (ŷ(ṽ), ẑ(ṽ)), we can conclude that (y(ṽ), z(ṽ)) /∈
X(ṽ) which contradicts the hypothesis of the theorem.

4 Two-phase SLR algorithm to solve the UDCL problem

4.1 Computing the initial point for algorithm SLR

As pointed out in [5], it is likely to be impractical that solving the oracle (23)-(27) at any v̄ > C because
the oracle is probably too difficult at that v̄. It is also likely that there exists a v∗0 ∈ V ∗0 with small
norm, for which the oracle subproblem is easier (with less binary variables) and hopefully tractable
by an integer programming solver. In this paper, we use the optimal solution v(λ∗) of the following
problem (29-31) to initialize the multiplier v.

min
0≤λ≤1

∑
k∈K

vk(λ) (29)

s.t.
∑
k∈K
−[

∑
l∈L

tjkldkl − vk(λ)]− + gj ≤ 0 j ∈ J (30)

v(λ) = λv0 + (1− λ)C (31)

where C is the vector of best combined costs defined in Section 3, v0 is some initial guess for v∗ ∈ V ∗0
such that T 1 ≤ v0 ≤ C. Obviously, v(λ∗) is one point in [v0, C], the line segment connecting points
v0 and C (notice that by Theorem 3, C ∈ V ∗0).

4.2 Two-phase SLR algorithm

In this section we combine the semi-Lagrangian relaxation approach with the theoretical results pre-
sented in Section 3, into what we call two-phase SLR algorithm to solve the UDCL problem. The dual
problems (22) and (16) are solved in the first phase and second phase, respectively. In the first phase,
theorem 4 is used to compute the initial SLR point in Step 3, and theorem 5 is enforced in Step 5 in
the first phase. The optimal result obtained in the first phase are used to initialize the multipliers u in
the second phase.

Algorithm 1.

• Input: v0 ≥ 0 initial guess for an optimal point of the dual problem (16).

10

• Output: (x(u∗, v∗), y(u∗, v∗), z(u∗, v∗), u∗, v∗) primal-dual optimal point for the UDCL prob-
lem (1− 8).

First phase: Solving the dual problem (22)

1. Initialization: For each customer k ∈ K = {1, 2, · · · , R}:

(a) compute its transportation costs:

Tjk =
∑
l∈L

tjkldkl j ∈ J = {1, 2, · · · , N};

(b) sort its costs Tjk such that
T 1
k ≤ T 2

k ≤ · · · ≤ T Nk ;

(c) compute its best combined cost:

Ck := min
j∈J
{
∑
l∈L

tjkldkl + gj}.

(d) set T N+1
k = Ck + ε for a ε > 0

2. Initial dual point:

(a) Solve problem (29)-(31) to obtain v(λ∗);

(b) Set v1 such that

v1k = min{T rk |T rk ≥ vk(λ∗), r ∈ {1, 2, · · · , N,N + 1}}+ ε (ε > 0);

(c) Set iter1 = 1.

3. Oracle call: Compute L0SLR(viter1), (y(viter1), z(viter1)) and the subgradient siter1 where

siter1k = 1−
∑
j∈J

zjk(v
iter1), k ∈ K.

4. Stopping criterion: If siter1 = 0, then stop: (ỹ∗, z̃∗, ṽ∗) = (yiter1, ziter1, viter1), ṽ∗ is the
optimal point of the problem (22).

5. Dual point updating:

(a) Define J(yiter1) := {j|yj(viter1) = 1, j ∈ J};
(b) For each k ∈ K such that siter1k = 0, set viter1+1

k = viter1k ;

(c) For each k ∈ K such that siter1k = 1, set

vk = min
j∈J(yiter1)

{Tjk},

viter1+1
k = min{T rk |T rk ≥ vk, r ∈ {1, 2, · · · , N,N + 1}}+ ε;

6. Set iter1 = iter1 + 1 and go to Step 3.

Second phase: Solving the dual problem (16)

11

1. Initialization:

(a) Compute Fijl = pil + cijl + hjl for each (i, j, l) (i ∈ I , j ∈ J , l ∈ L);

(b) For each (j, l) (j ∈ J , l ∈ L), sort cost Fijl such that

F1
jl ≤ F2

jl ≤ · · · ≤ FMjl ;

(c) Set u0jl = 0 for each (j, l)(j ∈ J , l ∈ L), and v0k = ṽ∗k for all k ∈ K;

(d) Set z(u0, v0) = z̃∗;

(e) Set iter2 = 1.

2. Dual point setting (I):

(a) For each (j, l) (j ∈ J , l ∈ L), compute Djl, the amount of commodity l transported from
the distribution center j to customers:

Djl =
∑
k∈K

dklzjk(u
iter2−1, viter2−1);

(b) Define uiter2 such that

uiter2jl = max{uiter2−1jl ,min{Frjl|
r∑
i=1

ALocate(i)l ≥ Djl, r ∈ I}}+ ε,

where Locate(·) is the locating function such that Frjl = FLocate(r)jl for the given r ∈ I .

(c) Define viter2 such that

viter2k = viter2−1k + max{
∑
l∈L

(uiter2jl − uiter2−1jl)dkl, j ∈ J}

3. Oracle call: Compute LSLR(uiter2, viter2), (x(uiter2, viter2), y(uiter2, viter2), z(uiter2, viter2))
and the subgradient siter2 and subiter2 where

siter2k = 1−
∑
j∈J

zjk(u
iter2, viter2), k ∈ K

subiter2jl =
∑
k∈K

dklzjk(u
iter2, viter2)−

∑
i∈I

xijk(u
iter2, viter2), j ∈ J, l ∈ L

4. Stopping criterion: If siter2 = 0 and subiter2 = 0, then stop:

(x(uiter2, viter2), y(uiter2, viter2), z(uiter2, viter2), uiter2, viter2) is the primal-dual optimal point.

5. Dual point setting (II):

(a) If siter2 6= 0 and subiter2 = 0,

i. set uiter2+1 = uiter2.
ii. for each k ∈ K such that siter2k = 0, set viter2+1

k = viter2k .
iii. for each k ∈ K such that siter2k = 1, set viter2+1

k = ṽk + ε where

ṽk = min
j∈J(yiter2)

{Tjk +
∑
l∈L

uiter2jl dkl} (32)

iv. set iter2 = iter2 + 1 and go to Step 3.

12

(b) If subiter2 6= 0,

i. for each k ∈ K such that siter2k = 1, firstly set ṽk by using equation (32), then set
viter2k = ṽk and zj′k(uiter2, viter2) = 1 where

j′ = min{j|ṽk = Tjk +
∑
l∈L

uiter2jl dkl, j ∈ J} (33)

ii. set iter2 = iter2 + 1 and go to Step 2.

Theorem 6 Algorithm 1 is a dual ascent method and after finitely many iterations, it converges to
optimal dual points ṽ∗ ∈ V ∗0 (V ∗0 6= ∅) in the first phase and (u∗, v∗) ∈ (U∗, V ∗) (U∗ 6= ∅ and
V ∗ 6= ∅) in the second phase, respectively.

Proof: Considering the first phase, let (y(viter), z(viter)) be the optimal solution of the oracleL0SLR(viter)
(iter is a finite positive integer). We have three exclusive cases:

Case 1 At least for one component of s(viter), say k′, there exists sk′(viter) = 1 and viterk′ < T N+1
k′ .

In this case, the updating procedure of Algorithm 1 consists in increasing component viterk′ (step
5 in the first phase). Thus, viter+1 > viter and by Theorem 1.2 we have L0SLR(viter+1) >
L0SLR(viter).

Case 2 All of the nonzero components of s(viter) have the associated multipliers viterk = T N+1
k . How-

ever, We can know by Theorem 3 that this case cannot happen.

Case 3 s(viter) = 0. By Theorem 1.4, we have viter ∈ V ∗0 .

For the second phase, we can also proof LSLR(uiter+1, viter+1) > LSLR(uiter, viter) by the updating
procedure of dual point, Step 5. After finitely many iterations, say iter2, if uiter2jl ≥ FMjl for all (j, l)
(j ∈ J , l ∈ L), and viter2k ≥ Ck + maxj∈J{

∑
l∈L u

iter2
jl dkl} for all k ∈ K, then (u∗, v∗) ∈ (U∗, V ∗)

by Collary 1.

5 Computational experiments

In order to assess the performance of algorithm two-phase SLR in terms of solution quality and CPU
time, we solve a set of UDCL instances by using plain CPLEX and algorithm two-phase SLR+Cplex,
respectively. The CPU time limit is set to 7200 seconds for the plain CPLEX. For the two-phase SLR
algorithm, owing to the fact that our main purpose is to solve the dual problem (12) in the second
phase which needs more CPU time, the CPU time limit is set to 10 seconds in the first phase and
7200 seconds in the second phase, respectively. The experiments are conducted on a laptop with a
processor Intel Core(TM) i7-2640M CPU 2.80GHz, and 6.00GB of RAM. CPLEX 12.5 (with default
parameters) interfaced with MATLAB R2010a is used as mixed integer linear programming solver.

Note that, on the one hand, we use plain CPLEX to solve the UDCL instances, and on the other hand,
we also use CPLEX as the integer programming solver to compute L0SLR(v) or LSLR(u, v) at each
iteration of algorithm two-phase SLR.

13

Table 1. Unit transportation cost

l tc1l tc2l

1 10 5

2 13 7

3 15 8

4 18 12

5 20 14

Table 2. Intervals of the parameters

parameters interval

pil [30,80]

hjl [20,50]

dkl [1,20]

Dis1ij [200,6000]

5.1 Instance description

For our test we use 15 instances which can be divided into two groups. All of the instances distribute 5
different kinds of commodity (l = 1, 2, · · · , 5) from depots to theirs customers through the distribution
centers. For the 5 kinds of commodity, the unit transportation costs from depots to distribution centers
tc1l and the unit transportation cost from distribution centers to customers tc2l are shown in Table
1. The parameters pil (unit supply cost of commodity l at depot i), hjl (the unit turnover cost of
commodity l at distribution center j), dkl(the demands of the customer k for commodity l), andDis1ij
(the distance between the depot i and distribution center j) are generated randomly in the intervals
shown in Table 2. The transportation cost cijl and the maximal supply Ail are generated by cijl =

tc1l ×Dis1ij and Ail = [α ×
∑

k∈K dkl
M + 0.5](M is the number of depots, [·] is the sign of rounding

off, α is a random number generated in the interval [1, 2]), respectively.

The fixed costs gj and the shipping costs tjkl in the first group are generated as follows: in the Euclidian
plane n points are randomly generated in the unit square [0, 1] × [0, 1]. Each point simultaneously
represents a distribution center and a customer (N = R), with N =500, 1000. The shipping costs
tjkl are determined by the Euclidian connection distance Dis2jk and tc2l, tjkl = Dis2jk × tc2l. In
each instance all the fixed costs gj are equal and calculated by

√
N/m with m = 10, 100 or 1000. All

values are rounded up to 4 significant digits and made integers. We use the label N −m to name the
6 instances in the first group.

The second group has 9 instances withN = R. In these instances, the shipping costs tjkl are generated
byDis2jk and tc2l, tjkl = Dis2jk×tc2l, where the connection distancesDis2jk are drawn uniformly
at random from [1000, 2000]. The fixed costs gj are drawn uniformly at random from [100, 200] in
class ’a’, from [1000, 2000] in class ’b’ and from [10000, 20000] in class ’c’. We use the label YZ to
name these instances, where Y is equal to ’N ’ and Z is the class (a,b,or c).

In Table 3 we further describe 15 instances used in our test, the number of depots (Nb. of Depots), the
number of clients (customers)(Nb. of Clients), the number of variables (Nb. of Vars.) and the number
of constraints (Nb. of Cons.). In the tables of this paper, P.ave. and G.ave. are the abbreviation for
partial average and global average, respectively.

14

Table 3. Instances description and CPLEX performance

Ins.

Instance description CPLEX performance

Nb.of Nb.of Clients Nb.of Nb.of Cost Time Nb.of

Depots (Customers) Vars. Cons. (sec.) Cents.

500-10 10 500 275500 253050 177895038.00 579.83 203

500-100 10 500 275500 253050 173623887.00 298.06 222

500-1000 10 500 275500 253050 173175181.00 253.77 224

1000-10 20 1000 1101000 1006100 295452336.00 7200(*) 428

1000-100 20 1000 1101000 1006100 282017753.00 4106.39 495

1000-1000 20 1000 1101000 1006100 280601341.00 3787.41 500

P.ave. 15.00 750.00 688250.00 629575.00 230460922.67 2704.24 345.33

250a 5 250 69000 64025 177284164.00 13.84 24

250b 5 250 69000 64025 177324820.00 28.29 24

250c 5 250 69000 64025 177630883.00 65.04 21

500a 10 500 275500 253050 337137841.00 4572.93 55

500b 10 500 275500 253050 337206433.00 1076.77 53

500c 10 500 275500 253050 337897110.00 1112.37 48

750a 15 750 619500 567075 491985941.00 2765.69 72

750b 15 750 619500 567075 492080299.00 2386.16 71

750c 15 750 619500 567075 492981199.00 1450.50 62

P.ave. 10.00 500.00 321333.34 294716.67 335725410.00 1496.84 47.78

G.ave. 12.00 600.00 468100.00 428660.00 293619615.07 1979.80 166.80

5.2 CPLEX performance

In Table 3 we report the results obtained with CPLEX 12.5 in default settings and 7200 seconds of
CPU time limit. Column Cost reports the objective function value. Column Time (sec.) reports the
CPU time (in seconds) for solving the UDCL. Column Nb. of Cents. reports the number of selected
distribution centers. Within the allowed time limit, 14 of the 15 instances were computed an optimal
solution by plain CPLEX, which are presented with CPU time less than 7200 seconds. The instance
1000-10 which was not proved its optimality is marked with (*). The average CPU time for solving the
first group of instances and the second group of instances are around 2704 seconds and 1496 seconds,
respectively. For the first group of instances, the number of the selected distribution centers is around
half of the number of the customers, that is, on average per selected distribution center serves 2 to 3
customers. For the second group of instances, the number of the selected distribution centers is around
one-tenth of the number of the customers. For example, 21 selected instances serve 250 customers for
instance 250c, and on average per selected distribution center serves 10 to 12 customers.

5.3 Two-phase SLR performance

In Table 4 we report the results obtained with the two-phase SLR algorithm. The results obtained
in the first phase and in the second phase are presented in columns First phase and Second phase,
respectively. Except instance 750c, other 14 instances were computed an optimal solution for the
dual problem (22) within 10 seconds of CPU time limit in the first phase. All of the tested instances
were computed an optimal primal-dual solution in the second phase. Obviously, the objective function
value obtained in the first phase (presented in the second column) is the lower bound of the objective

15

Table 4. The performance of the two-phase SLR algorithm

Ins.

First phase Second phase

Cost
Time Nb.of Nb.of

Cost
Time Nb.of Nb.of

Nb.of

(sec.) Vars. Cons.
Iter.

(sec.) Vars. Cons.
Cents.

500-10 11050628.00 0.42 1547 250500 177895038.00 19 635.86 194768 253050 203

500-100 1109056.00 0.42 1533 250500 173623887.00 16 335.35 181588 253050 222

500-1000 110608.00 0.37 1533 250500 173175181.00 11 202.66 162994 253050 224

1000-10 30521576.00 0.95 3277 1001000 295262913.00 16 5536.67 692264 1006100 429

1000-100 3139866.00 2.98 3096 1001000 282017753.00 31 1708.89 806886 1006100 495

1000-1000 313788.00 0.98 3096 1001000 280601341.00 29 1253.15 786428 1006100 500

P.ave. 7707587.00 1.02 2347.00 625750.00 230429352.17 20.33 1612.10 470821.26 629575.00 345.50

250a 120331522.00 0.06 816 62750 177284164.00 8 28.28 63977 64025 24

250b 120510808.00 0.05 985 62750 177324820.00 7 18.21 63967 64025 24

250c 121565859.00 0.84 2582 62750 177630883.00 6 77.98 63959 64025 21

500a 242645590.00 0.25 1797 250500 337137841.00 20 1167.95 253014 253050 55

500b 242969310.00 0.16 2478 250500 337206433.00 15 796.82 252982 253050 53

500c 244567496.00 4.63 7192 250500 337897110.00 16 1285.31 252987 253050 48

750a 356224920.00 0.97 2900 563250 491985941.00 11 2257.38 566922 567075 72

750b 356653816.00 1.17 4405 563250 492080299.00 11 1854.24 566924 567075 71

750c 358567649.00 10(*) 12602 563250 492981199.00 9 1163.41 566871 567075 62

P.ave. 240448552.22 1.58 3973.00 292166.67 335725410.00 11.44 961.07 294622.51 294716.67 47.78

G.ave. 147352166.13 1.36 3322.60 425600.00 293606986.87 15.00 1221.48 365102.01 428660.00 166.87

function value obtained in the second phase (presented in the sixth column). An important advantage
of the two-phase SLR is that usually it drastically reduces the number of relevant variables (otherwise
said, we can fix to 0 many variables). For example, instance 750a has 619500 variables shown in
Table 3, but as we can see in the fourth column of Table 4 only 2900 variables are relevant in the first
phase (the remaining 616600 variables are fixed to 0). Note that, the number of variables in the second
phase is different for each SLR iteration and therefore we give average figures corresponding to all
the SLR iterations. On average, in the first phase we only use 0.71% of the variables and 99.28% of
the constraints, and in the second we use 78.00% of the variables. As expected, we have a similar
reduction in the CPU time. We observe that except instance 750c, the dual problem (22) is solved
optimally in a few seconds in the first phase for other 14 instances.

Comparing tables 3 and 4, although the CPU time spent in the second phase is slightly higher than the
CPU time spent by plain CPLEX for instances 500-10, 500-100, 250a and 250c, the global average
CPU time of the two-phase SLR algorithm is competitive because the sum of CPU time spent in
the first phase and the second phase is reduced around 750 seconds. Especially, the two-phase SLR
algorithm took 5537.62 seconds to compute an optimal solution for the instance 1000-10 which was
not solved optimally by plain CPLEX within 7200 seconds.

6 Conclusion

The contribution of this paper are threefold: modelling, algorithmic and empirical.

Modelling contribution: Based on the distribution system characteristics of B2C E-commerce com-
panies, a mixed 0-1 integer programming model for determining the location of distribution centers
has been developed. This model is a multi-commodity, multi-stage and uncapacitated distribution cen-
ter location-allocation model considering the supply cost of different commodities. Comparing with

16

the models without considering the supply cost of commodities, this one is more close to the real
distribution system of B2C E-commerce companies.

Algorithmic contribution: We have studied the theoretical properties of the SLR dual problem in the
UDCL case. These properties are very useful for initialing and updating the Lagrangian multipliers.
Furthermore, a two-phase SLR algorithm has been proposed to solve the UDCL problem and we have
proved its (finite) convergece.

Empirical contribution: The performance of a general mixed integer programming solver, as CPLEX,
can be enhanced by combining it with the SLR approach. We have compared algorithm two-phase
SLR + CPLEX versus plain CPLEX in our computational experience. In this experience we have used
a set of 15 UDCL instances. Within a CPU time limit of 7200 seconds, 14 and 15 instances have been
solved by using plain CPLEX and algorithm two-phase SLR, respectively. On average, the two-phase
SLR algorithm has performed faster than the plain CPLEX. The reason for this good result is that, the
two-phase SLR drastically reduced the number of the UDCL relevant variables. Roughly speaking, on
average the number of relevant variables was reduced to 0.71% in the first phase and 78.00% in the
second phase, respectively.

Acknowledgement

This work is supported by the National Natural Science Foundation of China (Grant No.71401106), the
Innovation Program of Shanghai Municipal Education Commission (Grant No.14YZ090), the Shang-
hai Natural Science Foundation (Grant No.14ZR1418700), the Specialized Research Fund for the
Doctoral Program of Higher Education of China (Grant No.20123120120005), the Shanghai First-
class Academic Discipline Project (grant.S1201YLXK), the Hujiang Foundation of China (Grant
No.A14006).

References

[1] K. Aardal, P. L. Van den Berg, D. Gijswijt, and S. Li. Approximation algorithms for hard capac-
itated k-facility location problems. European Journal of Operational Research, 242(2):358–368,
2015.

[2] Y. An, B. Zeng, Y. Zhang, and L. Zhao. Reliable p-median facility location problem: two-stage
robust models and algorithms. Transportation Research Part B: Methodological, 64:54–72, 2014.

[3] N. Aydin and A. Murat. A swarm intelligence based sample average approximation algorithm
for the capacitated reliable facility location problem. International Journal of Production Eco-
nomics, 145(1):173–183, 2013.

[4] C. Beltran, C. Tadonki, and J.-Ph. Vial. Solving the p-median problem with a semi-Lagrangian
relaxation. Computational Optimization and Applications, 35(2):239–260, 2006.

[5] C. Beltran, J.-P. Vial, and A. Alonso-Ayuso. Semi-lagrangian relaxation applied to the uncapac-
itated facility location problem. Computational Optimization and Applications, 51(1):387–409,
2012.

[6] C.-H. Chen and C.-J. Ting. Combining lagrangian heuristic and ant colony system to solve the
single source capacitated facility location problem. Transportation Research Part E: Logistics
and Transportation Review, 44(6):1099–1122, 2008.

17

[7] M. Guignard. A Lagrangean dual ascent algorithm for simple plant location problems. European
Journal of Operational Research, 35:193–200, 1988.

[8] S. Hassanzadeh Amin and G. Zhang. A multi-objective facility location model for closed-loop
supply chain network under uncertain demand and return. Applied Mathematical Modelling,
37(6):4165–4176, 2013.

[9] Sin C. Ho. An iterated tabu search heuristic for the single source capacitated facility location
problem. Applied Soft Computing, 27:169–178, 2015.

[10] A. Klose and A. Drexl. Facility location models for distribution system design. European Journal
of Operational Research, 162(1):4–29, 2005.

[11] A. Klose and S. Gortz. A branch-and-price algorithm for the capacitated facility location prob-
lem. European Journal of Operational Research, 179(3):1109–1125, 2007.

[12] J. Li, F. Chu, and C. Prins. Lower and upper bounds for a capacitated plant location problem
with multicommodity flow. Computers & Operations Research, 36(11):3019–3030, 2009.

[13] J. Li, F. Chu, C. Prins, and Z. Zhu. Lower and upper bounds for a two-stage capacitated facility
location problem with handling costs. European Journal of Operational Research, 236(3):957–
967, 2014.

[14] S. Li. A 1.488 approximation algorithm for the uncapacitated facility location problem. Infor-
mation and Computation, 222:45–58, 2013.

[15] A. M. Nezhad, H. Manzour, and S. Salhi. Lagrangian relaxation heuristics for the uncapacitat-
ed single-source multi-product facility location problem. International Journal of Production
Economics, 145(2):713–723, 2013.

[16] M.T. Melo, S. Nickel, and F. Saldanha-da Gama. Facility location and supply chain management–
a review. European Journal of Operational Research, 196(2):401–412, 2009.

[17] J. Puerto, A.B. Ramos, and A.M. Rodriguez-Chia. A specialized branch & bound & cut for
single-allocation ordered median hub location problems. Discrete Applied Mathematics, 161(16-
17):2624–2646, 2013.

[18] A. Rahmani and S.A. MirHassani. A hybrid firefly-genetic algorithm for the capacitated facility
location problem. Information Sciences, 283:70–78, 2014.

[19] C. Rao, M. Goh, Y. Zhao, and J. Zheng. Location selection of city logistics centers under sus-
tainability. Transportation Research Part D, 36:29–44, 2015.

[20] L. Yang, X. Ji, Z. Gao, and K. Li. Logistics distribution centers location problem and algorithm
uder fuzzy environment. Journal of Computational and Applied Mathematics, 208(2):303–315,
2007.

[21] L. Yun, Y. Qin, H. Fan, C. Ji, and X. Li. A reliability model for facility location
design under imperfect information. Transportation Research Part B: Methodological,
http://dx.doi.org/10.1016/j.trb.2014.10.010, 2014.

18

