
Two-Stage Stochastic
Mixed-Integer Linear Programming:
The Conditional Scenario Approach

C. Beltran-Royo∗

30/08/2016

Abstract

In this paper we consider the two-stage stochastic mixed-integer linear program-
ming problem with recourse, which we call the RP problem. A common way to
approximate the RP problem, which is usually formulated in terms of scenarios, is
to formulate the so-called Expected Value (EV) problem, which only considers the
expectation of the random parameters of the RP problem. In this paper we introduce
the Conditional Scenario (CS) problem which represents a midpoint between the RP
and the EV problems regarding computational tractability and ability to deal with
uncertainty. In the theoretical section we have analyzed some useful bounds related
to the RP, EV and CS problems. In the numerical example here presented, the CS
problem has outperformed both the EV problem in terms of solution quality, and the
RP problem with the same number of scenarios as in the CS problem, in terms of
solution time.

Keywords: Stochastic mixed-integer linear programming, conditional expectation,
scenario, conditional scenario.

1 Introduction

The relevance for managerial purposes, properties, solution methods and applications of two-stage
stochastic mixed-integer linear programming can be found in surveys such as [35] and in books such
as [10]. Among the applications one finds: the facility location problem with Bernoulli demands [2],
scheduling of a multiproduct batch plant with uncertain demand [15], strategic production planning
under uncertainty [4], thermal power system expansion [3] and employee scheduling in retail outlets
with uncertain demand [30].

To address stochastic optimization problems different approaches can be used: robust optimization [7],
chance constraint optimization [13, 32], sampling based methods [21] and scenario based optimization
[10, 25], among others. In this paper we focus on the last approach. The RP problem here considered
corresponds to a two-stage stochastic mixed-integer linear optimization problem with recourse and
risk neutral. Several variants of this RP problem have been proposed in the literature: multi-stage
versions [8, 28], risk aversion versions [37], non-linear versions [1], etc.

The two-stage stochastic mixed-integer linear programming problem formulated in terms of a con-
tinuous random vector which accounts for all the uncertain parameters of the problem is, in general,
numerically intractable. To address this difficulty one can approximate the original random vector by a
random vector with a finite number of realizations (the scenario tree). Thus, in the first step of scenario
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based optimization one calculates a representative and tractable scenario tree. See [14, 20, 22, 27, 29],
among others. In the second step, one formulates and solves the so-called deterministic equivalent,
which we call the RP problem. A general purpose optimization software, such as CPLEX [23], can
be used to solve RP instances of moderate size. However, given the high complexity of the RP prob-
lem, in many cases one needs to use specialized approaches: branch-and-fix coordination [5], Benders
decomposition [36], Lagrangian relaxation [41], decomposition with branch-and-cut [38], etc. In this
paper we will assume that the RP problem has been formulated in terms of a random vector with
discrete support consisting of S scenarios which corresponds to a structured Mixed-Integer Linear
Programming (MILP) problem.

As an alternative to the RP problem one can use the Expected Value (EV) problem [10], where the
random parameters of the RP problem are approximated by their expectations. That is, the EV problem
approximates the RP problem by ignoring the parameter uncertainty. It is normally recognized that the
EV problem requires a low computational effort but, in general, it is not an adequate approximation to
the stochastic programming problems [10, 25]. Therefore, it seems that scenario based optimization
(the RP problem) and deterministic optimization (the EV problem) represent two extreme choices
regarding computational effort and ability to deal with uncertainty. A natural question can be raised:
would it be possible to propose a midpoint between these two approaches? That is, would it be possible
to suggest an approach with a moderate computational effort and with a reasonable ability to deal with
uncertainty? In this paper we give a positive answer to this question by introducing the Conditional
Scenario (CS) problem. As we will see, in the CS problem the random parameters of the RP problem
are approximated by their conditional expectations. Thus, the CS problem improves the ability of the
EV problem to deal with uncertainty by considering conditional expectations instead of expectations.
On the other hand, the CS problem reduces the computational burden of the RP problem by considering
conditional scenarios instead of scenarios (the conditional scenario concept will be introduced in
Section 3). Of course, there is no such thing as a free lunch and the optimal CS solution is, in general,
suboptimal for the RP problem but hopefully better than the optimal EV solution.

The CS approach can be seen as an aggregation method. The idea of aggregate constraints and/or
variables for solving large-scale problems is well known. A survey presented in [34] demonstrates
aggregation and disaggregation techniques for optimization problems. Different aggregation methods
have been analyzed for several optimization problems including linear programming [43, 44], mixed-
integer linear programming [18] and non-linear programming [16]. In the context of aggregation
methods applied to stochastic programming, [9] obtains bounds on the optimal value of a multistage
stochastic linear program with random right-hand sides. These results are extended in [42] to the
general case which allows for randomness not only in the right-hand sides but also in the constraint
matrices and costs. In [40] the aggregation approach is used not only to derive optimality bounds but
also to solve the original two-stage stochastic linear program (with fixed recourse and fixed costs). In
the CS approach, seen as an aggregation method, the aggregation weights are given by conditional
probability functions (see Remark 3 in the Appendix). The main theoretical contribution of the CS
approach is to provide stronger bounds for the RP problem, compared to the EV ones (see Section
5). Furthermore, in the numerical example in Section 6 the CS approach clearly outperforms the EV
approach and the RP approach (with the same number of scenarios as in the CS approach) in order to
efficiently compute good quality solutions.

In summary, the objectives of this paper are to introduce the CS approach, to study some of its theo-
retical properties and to show by example how one can efficiently obtain good solutions in two-stage
stochastic mixed-integer linear programming. With these objectives in mind, in Section 2 we formu-
late the RP and EV problems. In Section 3 we introduce the conditional scenario concept to be used
to formulate the CS problem in Section 4. In Section 5 some useful bounds related to the RP, CS and
EV problems are stated. In Section 6 a numerical example is used to compare the EV, CS and RP
problems. Section 7 concludes the paper and outlines future research. Finally, in the Appendix we
prove the theoretical results of Section 5.
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2 The recourse problem

2.1 Notation

Indexes:
t Decision stages t ∈ T = {1, 2}
j Integer components of decision vectors at stage t j ∈ Jt = {1, . . . , Jt}, t ∈ T
e Realizations of random variables e ∈ E = {1, . . . , E}
r Components of random vectors r ∈ R = {1, . . . , R}
s Scenarios s ∈ S = {1, . . . , S}
re Index pair for conditional scenarios re ∈ REr = R× Er

where Er = {1, . . . , Er}

Random vectors:
ξ̃ Random vector with finite support which accounts for all the

random parameters of the RP problem

ξ̃s Scenario or realization of the random vector ξ̃ s ∈ S
p̃s Probability of ξ̃s, that is, p̃s = P

(
ξ̃ = ξ̃s

)
s ∈ S

ξ̃r Component r of the random vector ξ̃ r ∈ R
ξ̃re Realization of the random variable ξ̃r r ∈ R, e ∈ Er
ξ̂r Random vector which approximates ξ̃ by conditional

expectation, that is, ξ̂r = E[ ξ̃ | ξ̃r ] r ∈ R
ξ̂re Conditional scenario or realization of the random vector ξ̂r

ξ̂re = E[ ξ̃ | ξ̃re ] r ∈ R, e ∈ Er
p̂re Probability of ξ̂re, that is, p̂re = P

(
ξ̂r = ξ̂re

)
r ∈ R, e ∈ Er

ξ̄ Expectation of ξ̃, that is, ξ̄ = E[ ξ̃ ]

2.2 Problem formulation

The RP problem considered in this paper can be written as follows (stochastic version):

min
x̃

zRP = cᵀ1x̃1 + E[ c̃ᵀ2x̃2(ξ̃) ] (1)

s.t. A1x̃1 = b1 (2)

Ã2x̃1 + B̃2x̃2(ξ̃) = b̃2 w.p.1 (3)

x̃1 ≥ 0 (4)

x̃2(ξ̃) ≥ 0 w.p.1 (5)

x̃1j integer j ∈ J1 (6)

x̃2j(ξ̃) integer w.p.1, j ∈ J2, (7)

where ‘w.p.1’ stands for ‘with probability one’ and Jt is the index set for the integer variables at stage t
for all t ∈ T . It is assumed that some or all the entries of c̃2, Ã2, B̃2 and b̃2 are random variables with
finite support. In this context, it is common to define a random vector with all the random parameters
of the problem, say ξ̃ = vec

(
c̃2, Ã2, B̃2, b̃2

)
, where ‘vec’ is the operator that stacks vectors and

matrix columns into a single vector. The support of ξ̃ is the set of scenarios or realizations ξ̃s and the
corresponding probabilities are p̃s = P

(
ξ̃ = ξ̃s

)
for all s ∈ S. The random parameters are written in

boldface to distinguish them from the deterministic ones, namely, c1, A1 and b1.
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In the RP problem the first stage decision vector x̃1 does not depend on the uncertain parameters in
contrast with the second stage decision vector x2, which depends on ξ̃ and for this reason one usually
writes x̃2(ξ̃) and calls it a policy [39]. The objective of the RP problem here formulated is to minimize
the first stage cost plus the expected second stage cost.

For numerical purposes the RP problem is written in the so-called deterministic equivalent version:

min
x̃

zRP = cᵀ1x̃1 +
∑
s∈S

p̃s c̃sᵀ2 x̃
s
2 (8)

s.t. A1x̃1 = b1 (9)

Ãs
2x̃1 + B̃s

2x̃
s
2 = b̃s2 s ∈ S (10)

x̃1 ≥ 0 (11)

x̃s2 ≥ 0 s ∈ S (12)

x̃1j integer j ∈ J1 (13)

x̃s2j integer s ∈ S, j ∈ J2, (14)

such that ξ̃s = vec
(
c̃s2, Ã

s
2, B̃

s
2, b̃

s
2

)
for all s ∈ S.

The RP problem can be approximated by the so-called expected value problem. More precisely, the
EV problem corresponds to approximate ξ̃ by ξ̄ = E[ ξ̃ ] = vec

(
c̄2, Ā2, B̄2, b̄2

)
and can be stated as

min
x̄

zEV = cᵀ1x̄1 + c̄ᵀ2x̄2 (15)

s.t. A1x̄1 = b1 (16)

Ā2x̄1 + B̄2x̄2 = b̄2 (17)

x̄1 ≥ 0 (18)

x̄2 ≥ 0 (19)

x̄tj integer t ∈ T , j ∈ Jt. (20)

Notice that notation x̄ and x̃ is used to distinguish the decision vectors of the EV and RP problems.
To measure the quality of an optimal EV solution x̄∗, one usually considers the so-called ‘Expected
result of using the EV solution’ (E-EV) [10]. The E-EV can be computed by solving the RP problem
with the additional constraint x̃1 = x̄∗1 (here we are assuming that x̄∗1 is feasible for the RP problem).
Further details can be found in Section 6.4.

3 Conditional scenarios

In this section we introduce the conditional scenario concept. As already pointed out, a two-stage
stochastic MILP problem formulated in terms of a continuous random vector, say ξ =

(
ξ1 . . . ξR

)ᵀ
,

is in general numerically intractable. To address this difficulty one can approximate ξ by a random
vector, say ξ̃ =

(
ξ̃1 . . . ξ̃R

)ᵀ
, with a discrete support consisting of S scenarios, and solve the cor-

responding RP problem. Since the computational complexity to solve the RP problem increases with
the number of scenarios, some techniques to compute a reduced number of representative scenarios
are normally used: moment matching methods [22, 26], the Sample Average Approximation (SAA)
method [21, 27], approaches based on probability metrics [14, 31], among others. If the computational
effort of using scenarios is high, in this paper we propose to approximate ξ̃ by the rth conditional
expectation ξ̂r = E[ ξ̃ | ξ̃r ] for all r ∈ R, and then formulate the CS problem in terms of these con-
ditional expectations (this problem will be defined in the next section). The conditional expectation
ξ̂r =

(
ξ̂r1 . . . ξ̂

r
R

)ᵀ is a random vector with a finite number of realizations ξ̂re and the corresponding
probability values p̂re = P

(
ξ̂r = ξ̂re

)
for all e ∈ Er. Each realization ξ̂re is called a conditional

expectation scenario or, for short, conditional scenario. Notice that we use symbol ξ̃s with s ∈ S for
scenarios and symbol ξ̂re with re ∈ REr for conditional scenarios. Therefore, above a ‘discretiza-
tion + conditional expectation’ scheme has been outlined, which can be summarized by the chain
ξ → ξ̃ → {ξ̂r}r∈R. That is, the conditional scenarios are computed from a given set of scenarios.
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As we will see in Example 1, it is also possible to compute conditional scenarios directly from a given
continuous random vector by applying a ‘conditional expectation + discretization’ scheme which can
be summarized by the chain ξ → {ξr}r∈R → {ξ̂r}r∈R. That is, one approximates the continuous
random vector by a set of (continuous) conditional expectation vectors and then discretizes them into
a set of (discrete) conditional expectation vectors. Therefore, the two outlined approaches can be used
to generate a representative set of conditional scenarios. The equivalence and effectiveness of these
two approaches is a matter of further research.

Next, we present two discretization methods: Method 1 is intended to discretize a normal random
variable. Method 2 is intended to discretize a multinormal random vector into conditional scenarios (it
uses Method 1).

Method 1. (Discretization of a normal random variable)

• Objective: To approximate a normal random variable x by a finite support one x̃.

• Input: x, random variable N(µ, σ). E, number of discretization points. I0 = [a, b[,
bounded interval such that P

(
x ∈ I0

)
≈ 1.

• Output: x̃, discrete random variable with support {x̃e}e∈E and the corresponding proba-
bilities {p̃e}e∈E , such that p̃e = P

(
x̃ = x̃e

)
for all e ∈ E = {1 . . . , E}.

• Steps:

1) Divide I0 into E intervals of equal length Ie = [ae, be[ for all e ∈ E , such that
the union is I0 and the intersection is empty for any pair of them (i.e., {Ie}e∈E is a
partition of I0).

2) Compute the discretization points

x̃e = E[x | x ∈ Ie ] = µ+ σ
φ(αe)− φ(βe)

Φ(βe)− Φ(αe)
e ∈ E , (21)

where αe = (ae−µ)/σ and βe = (be−µ)/σ. As usual, φ and Φ are the probability
density function and the cumulative distribution function, respectivelly, of a standard
normal random variable.

3) Compute the corresponding probabilities

p̃e = P
(
x ∈ Ie

)
= Φ(βe)− Φ(αe) e ∈ E .

Notice that Equation (21) corresponds to the expectation of a truncated normal distribution ([24],
Section 10.1). In this context, the ‘best’ discretization of a continuous random variable or vector
according to a given criterion is known in the literature as the optimal quantization problem [31].
Method 1 is a quantization heuristic used in this paper to illustrate the conditional scenario approach
and, of course, other discretization methods could be used. The impact of the quantization method that
one uses in the conditional scenario approach is a matter that deserves further research.

As already pointed out, the following method can be used to discretize a multinormal random vector
into conditional scenarios (it follows the ‘conditional expectation + discretization’ scheme).

Method 2. (Conditional scenarios of a multinormal random vector)

For all r ∈ R :

1) Given ξ =
(
ξ1 . . . ξR

)ᵀ
, a multinormal random vector such that ξ ∼ NR(µ,Σ), com-

pute the rth conditional expectation (see [19], Section 5.1):

ξr = E[ ξ | ξr ] = µ+
ξr − µr
σ2
r

Σ∗r, (22)

where Σ∗r is the r-th column of the covariance matrix Σ.
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2) Discretize the normal random variable ξr into the random variable ξ̃r which has finite
support {ξ̃re}e∈Er and the corresponding probabilities {p̃re}e∈Er (see Method 1).

3) By using the discrete random variable ξ̃r, discretize the continuous random vector ξr into
the random vector ξ̂r which has finite support {ξ̂re}e∈Er and the corresponding probabil-
ities {p̂re}e∈Er . More precisely:

ξ̂re = E[ ξ | ξ̃re ] = µ+
ξ̃re − µr
σ2
r

Σ∗r e ∈ Er

p̂re = p̃re e ∈ Er.

Considering that by definition the random vector ξr is a transformation of the random variable ξr, the
number of the corresponding conditional scenarios is equal to the number of points used to discretize
ξr into ξ̃r, that is, Er. Otherwise said, we have a conditional scenario ξ̂re per each discretization
point ξ̃re. Taking into account that the vectors to be discretized are ξ1, . . . , ξR, the total number of
conditional scenarios is

∑R
r=1Er.Of course, the CS problem, which is based on conditional scenarios,

is an approximation to the RP problem and for this reason, the optimal CS solution is, in general,
suboptimal for the RP problem but hopefully better than the EV counterpart.

Example 1. (Conditional scenarios of a multinormal random vector) Let us consider the multinormal
random vector ξ =

(
ξ1 ξ2

)ᵀ ∼ N2(µ,Σ) such that

µ =
(

100 200
)ᵀ

Σ =

(
400 480

480 1600

)
.

In order to illustrate the previous methods, let us approximate ξ by six conditional scenarios derived
from the 1st conditional expectation. In the first step of Method 2 one computes the 1st conditional
expectation by using (22):

ξ1 = E[ ξ | ξ1 ] =

(
ξ1

80 + 1.2ξ1

)
, (23)

where ξ1 ∼ N(µ1, σ1) with µ1 = 100 and σ1 = 20. In the second step of Method 2 one discretizes
the random variable ξ1 into six representative points. By using Method 1 with E = 6 points and
I0 = [µ1 − 3σ1, µ1 + 3σ1[, one obtains:

ξ̃1,1 = 53.7 p̃1,1 = 0.0214

ξ̃1,2 = 72.3 p̃1,2 = 0.1363

ξ̃1,3 = 90.8 p̃1,3 = 0.3423

ξ̃1,4 = 109.2 p̃1,4 = 0.3423

ξ̃1,5 = 127.7 p̃1,5 = 0.1363

ξ̃1,6 = 146.3 p̃1,6 = 0.0214.

In the third step of Method 2 one computes the conditional scenarios combining the previous dis-
cretization of ξ1 with (23). For example the first conditional scenario ξ̂1,1 can be computed as follows:

ξ̂1,1 = E[ ξ | ξ̃1,1 ] =

(
ξ̃1,1

80 + 1.2ξ̃1,1

)
=

(
53.7

80 + 1.2 · 53.7

)
=

(
53.7

144.4

)
p̂1,1 = p̃1,1 = 0.0215.
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Figure 1: Equiprobability contour ellipses of the multinormal ran-
dom vector ξ of Example 1. The dashed and the solid lines cor-
respond to the first (ξ1) and the second (ξ2) conditional expec-
tations, respectively. The dots represent the twelve conditional
scenarios and the square represents the ‘expected scenario’ µ.

In summary we obtain:

ξ̂1,1 =
(

53.7 144.4
)ᵀ

p̂1,1 = p̃1,1

ξ̂1,2 =
(

72.3 166.8
)ᵀ

p̂1,2 = p̃1,2

ξ̂1,3 =
(

90.8 189.0
)ᵀ

p̂1,3 = p̃1,3

ξ̂1,4 =
(

109.2 211.0
)ᵀ

p̂1,4 = p̃1,4

ξ̂1,5 =
(

127.7 233.2
)ᵀ

p̂1,5 = p̃1,5

ξ̂1,6 =
(

146.3 255.6
)ᵀ

p̂1,6 = p̃1,6.

The approximation of ξ by six conditional scenarios derived from the 2nd conditional expectation
ξ̂2 could be done analogously. In total we would obtain twelve conditional scenarios which are rep-
resented in Figure 1. As we will see in the next section, the CS problem is formulated in terms of
conditional scenarios in contrast with the EV problem, which is formulated in terms of the ‘expected
scenario’ µ (the square in Figure 1).

4 The conditional scenario problem

Now let us see that, given a random vector ξ̃, its conditional expectation ξ̂r is an ‘optimal approxima-
tion’ of ξ̃ for any r ∈ R. The conditional expectation ξ̂r = E[ ξ̃ | ξ̃r ], viewed as a function h∗r(ξ̃r),
can be interpreted as an approximation of the random vector ξ̃ by a function of the random variable
ξ̃r. The error of this approximation is then given by

U = ξ̃ − h∗r(ξ̃r).

The approximation h∗r has appealing properties (Theorem 4.3 in [19]): a) It has a null expected error,
that is, E[U ] = 0. b) It is an optimal approximation of ξ̃ in the sense that it minimizes the mean
squared error (MSE), where

MSE(hr) = E[
(
ξ̃ − hr(ξ̃r)

)ᵀ(
ξ̃ − hr(ξ̃r)

)
] = E[ ‖ξ̃ − hr(ξ̃r)‖2 ].
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Now that E[ ξ̃ | ξ̃r ], known as the regression function of ξ̃ on ξ̃r, is an optimal approximation to ξ̃ as
a function of ξ̃r, the question is: Which approximation ξ̂r should one use? A possible answer is to use
all of them: ξ̂1, . . . , ξ̂R. Since we do not wish simultaneous approximations, we consider a random
index r with uniform distribution in R, that is, P

(
r = r

)
= 1/R for all r ∈ R. Then we consider

the randomized conditional expectation ξ̂r (notice the random superscript written in boldface) which
is equivalent to consider each ξ̂r with probability 1/R for all r ∈ R.

Next we define the Conditional Scenario (CS) problem as the approximation to the RP problem based
on the approximation of the random vector ξ̃ by the set of conditional expectations {ξ̂r}r∈R, each one
taken with probability 1/R. The CS problem can be stated as follows (stochastic version):

min
x̂

zCS = cᵀ1x̂1 +
1

R

∑
r∈R

E[ĉr ᵀ2 x̂2(ξ̂r)] (24)

s.t. A1x̂1 = b1 (25)

Âr
2x̂1 + B̂r

2x̂2(ξ̂r) = b̂r
2 w.p.1, r ∈ R (26)

x̂1 ≥ 0 (27)

x̂2(ξ̂r) ≥ 0 w.p.1, r ∈ R (28)

x̂1j integer j ∈ J1 (29)

x̂2j(ξ̂
r) integer w.p.1, r ∈ R, j ∈ J2, (30)

where

ξ̂r = E[ ξ̃ | ξ̃r ] = vec
(
ĉr2, Â

r
2, B̂

r
2, b̂

r
2

)
r ∈ R

ĉr2 = E[ c̃2 | ξ̃r ], Âr
2 = E[ Ã2 | ξ̃r ] r ∈ R

B̂r
2 = E[ B̃2 | ξ̃r ], b̂r

2 = E[ b̃2 | ξ̃r ] r ∈ R.

Finally, we state the CS problem in the deterministic equivalent version:

min
x̂

zCS = cᵀ1x̂1 +
1

R

∑
re∈REr

p̂re ĉreᵀ2 x̂re2 (31)

s.t. A1x̂1 = b1 (32)

Âre
2 x̂1 + B̂re

2 x̂
re
2 = b̂re2 re ∈ REr (33)

x̂1 ≥ 0 (34)

x̂re2 ≥ 0 re ∈ REr (35)

x̂1j integer j ∈ J1 (36)

x̂re2j integer re ∈ REr, j ∈ J2. (37)

The deterministic equivalent version is used for numerical purposes (see Section 6) and the stochastic
one for theoretical analysis (see the Appendix).

5 Useful bounds

In this section we give some bounds which can be used to assess the quality of the optimal EV and
CS solutions. Normally, the EV and CS problems are solved to approximate difficult RP instances. In
this case, one cannot assess the quality of the optimal EV and CS solutions by using the optimal RP
cost, that is, one cannot compute the EV and CS optimality gaps. If one has a lower bound for the RP
optimal cost, a worst-case optimality gap can be computed for the optimal EV and CS solutions (see
Section 6.4 for details). In what follows the values z∗EV , z

∗
CS and z∗RP stand for the optimal cost of

the EV, CS and RP problems, respectively. The proofs of the following theoretical results are in the
Appendix.
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Proposition 1. Let us consider the RP problem (1)–(7) where some or all of the components of A2

and/or b2 are stochastic (the other parameters being deterministic). Let us assume that J2 = ∅, that
is, all the second stage variables are continuous in the EV, CS and RP problems. Then

z∗EV ≤ z∗CS ≤ z∗RP .

Remark 1. This result also applies if the recourse problem has integer second stage variables. To
explain this remark, let us consider a recourse problem, say RP1, with stochastic A2 and/or b2 such
that J2(RP1) 6= ∅. One can consider: problem RP, obtained from problem RP1 by dropping the
integrality condition (J2 = ∅) and the corresponding problems CS and EV (they have the same J2).
Then, by Proposition 1, it is clear that

z∗EV ≤ z∗CS ≤ z∗RP ≤ z∗RP1
.

Proposition 2. Let us consider the RP problem (1)–(7) where some or all the components of c2 are
stochastic (the other parameters being deterministic). Then

z∗RP ≤ z∗CS ≤ z∗EV .

Approximating the RP problem by the EV problem has three main drawbacks. First, as one would
expect, any optimal EV decision, say x̄∗1, is in general suboptimal for the RP problem (assuming that
x̄∗1 is feasible for the RP problem). Second, the optimal EV cost z∗EV is usually misleading, since it
does not correspond to the true expected cost associated with x̄∗1, the so-called expected result of using
the EV solution (E-EV) [10]. It can be computed by solving the E-EV problem which corresponds to
the RP problem with the additional constraint x̃1 = x̄∗1 (see Section 6.4). Third, the EV problem does
not take parameter uncertainty, if any, into account. On the other hand, approximating the RP problem
by the CS problem, only avoids the third drawback. For this reason, we define the expected result of
using the CS solution (E-CS) as the counterpart of the E-EV, which can be computed analogously.

Proposition 3. Let us consider the RP problem (1)–(7) where some or all the second stage parameters
are stochastic (c1, A1 and b1 are always deterministic). Let us assume that x̄∗1 and x̂∗1, optimal first
stage solutions for the EV and CS problems, respectively, are feasible for the RP problem. Then

z∗RP ≤ z∗E-EV and z∗RP ≤ z∗E-CS .

Proposition 4. Let us consider the RP problem (1)–(7) where some or all the components of c2 are
stochastic (the other parameters being deterministic). Then

z∗RP ≤ z∗E-EV ≤ z∗EV and z∗RP ≤ z∗E-CS ≤ z∗CS .

Remark 2. A particularly useful case is the RP problem such that J2 = ∅ and only A2 and/or b2 are
stochastic (the RP problem has fixed recourse and deterministic c2). In this case we have that

z∗CS ≤ z∗RP ≤ z∗E-CS and that z∗CS ≤ z∗RP ≤ z∗E-EV ,

which allows to compute worst-case optimality gaps for the optimal EV and CS solutions (notice that
we use z∗CS in both cases since by Proposition 1 it is a tighter bound for z∗RP than z∗EV ). In the next
section we will illustrate this case.

6 Numerical example

In order to illustrate the CS approach, in this section we use a multi-farm feed manufacturer problem
which can be modelled as an RP problem with uncertain left-hand sides. This problem has been
inspired by the farmer’s problem in [10]. Our objective is to compare the EV, CS and SAA approaches
as approximations to the RP problem intended to reduce the computational burden. Computations
have been conducted on a PC using Windows 7 (64 bits), with a Intel Core i5 processor, 2.67GHz
and 8 GB of RAM. The corresponding MILP problems have been solved by CPLEX 12.6 with default
parameters.
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Table 1: Parameters of the EV multi-farm feed manufacturer problem.

Parameter Value Unit Description

I 10 - Number of crops

I {1, . . . , I} - Index set for crops

i - - Index for crops i ∈ I
J 5 - Number of farms

J {1, . . . , J} - Index set for farms

j - - Index for farms j ∈ J
c1ij 100 + 3

(
I(j − 1) + i

)
euros/acre Planting cost of crop i

in farm j i ∈ I, j ∈ J
q̄2ij 2 + 0.02

(
I(j − 1) + i

)
tonnes/acre Expected yield rate

of crop i in farm j i ∈ I, j ∈ J
b1j 150 + 50j acres Available land in farm j j ∈ J
b2i 400 + 12i tonnes Amount of crop i needed i ∈ I
f2i 2.3

( ∑
j∈J (c1ij/q̄2ij)

)
/J euros/tonne Buying price of crop i i ∈ I

g2i 0.5f2i euros/tonne Selling price of crop i i ∈ I

6.1 The EV multi-farm feed manufacturer problem

Example 2. (The EV multi-farm feed manufacturer problem: expected yields)

Consider a feed manufacturer who specializes in raising and manufacturing several types of feed ingre-
dients as for example corn, soybeans, sorghum, oats and barley. In total he plants I types of crops on
his J farms. Each farm has b1j acres of land. Based on experience, the manufacturer knows for each
crop i ∈ I and for each farm j ∈ J : a) That the mean yield is q̄2ij tonnes/acre. b) That the planting
cost is c1ij euros/acre. c) That b2i tonnes are needed for the next feed manufacturing season. These
amounts can be raised on the manufacturer farms or purchased from the market and any production in
excess is sold. For each crop i, the purchasing and selling prices for the manufacturer are f2i and g2i,
respectively. Furthermore, for economic reasons each crop can be raised, at most, on two farms. Table
1 summarizes the parameters of this problem. It is clear that this is a synthetic example which will be
used to illustrate the use of the conditional scenario (CS) approach.

The feed manufacturer wants to decide how much land to devote to each crop in order to obtain the
feed ingredients for the next season at the minimum cost. Furthermore, he also wishes to decide the
farms on which to raise each crop (at most two farms per crop).

The first step to solve this problem is to define the decision variables (Table 2). The second step is to

10



Table 2: Decision variables of the EV multi-farm feed manufacturer problem.

Decision Unit Description

ū1ij - ū1ij = 1, if crop i is raised in farm j i ∈ I, j ∈ J
ū1ij = 0, otherwise

x̄1ij acres Land devoted to crop i in farm j i ∈ I, j ∈ J
ȳ2i tonnes Amount of crop i purchased i ∈ I

(under production shortage)

z̄2i tonnes Amount of crop i sold i ∈ I
(under production excess)

formulate the EV problem:

min
ū,x̄,ȳ,z̄

zEV =
∑

i∈I,j∈J
c1ij x̄1ij +

∑
i∈I

(
f2i ȳ2i − g2iz̄2i

)
(38)

s.t.
∑
i∈I

x̄1ij ≤ b1j j ∈ J (39)∑
j∈J

q̄2ij x̄1ij + ȳ2i − z̄2i = b2i i ∈ I (40)

∑
j∈J

ū1ij ≤ 2 i ∈ I (41)

x̄1ij ≤ ū1ij b1j i ∈ I, j ∈ J (42)

ū1ij ∈ {1, 0} i ∈ I, j ∈ J (43)

x̄1 ≥ 0 (44)

ȳ2 ≥ 0, z̄2 ≥ 0. (45)

• In (38) the total cost is computed as the planting cost cᵀ1x̄1 plus the crop purchasing cost
fᵀ2 ȳ2 (under production shortage) minus the crop selling revenue gᵀ2 z̄2 (under production
excess).

• Constraint (39) states that, for each farm j, the planted land must be no more than the
available land b1j .

• In (40) there is a balance equation such that, for each crop i, the corresponding production
must be equal to the crop demand b2i with the help of purchasing or selling some crops,
ȳ2i or z̄2i, respectively, if necessary.

• Constraints (41) and (42) ensure that each crop can be raised, at most, on two farms.

• We remark this MILP problem has 50 binary variables, 70 continuous variables and 75
constraints.
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After solving this EV problem by using the MILP solver (CPLEX) one obtains:

z∗EV = 401, 274

x̄∗1 =



0 0 0 0 0

0 0 0 0 27

0 0 0 0 152

0 0 0 0 156

0 0 0 101 65

0 0 0 174 0

0 0 109 75 0

0 3 191 0 0

0 214 0 0 0

200 33 0 0 0



ȳ∗2 =



412

346

0

0

0

0

0

0

0

0



z̄∗2 =



0

0

0

0

0

0

0

0

0

0



.

That is, for each i ∈ I, j ∈ J , devote x̄∗1ij acres to crop i in farm j and purchase ȳ∗2i tonnes of crop i
to obtain the optimal EV cost (401,274 euros). Notice that there is no production excess (z̄∗2 = 0).

6.2 The CS multi-farm feed manufacturer problem

Example 3. (The CS multi-farm feed manufacturer problem: uncertain yields)

In the previous example, although the yield rates are uncertain prior to raising the crops, the EV
problem has been formulated in terms of the corresponding expected values, which are determin-
istic. In the current example we show how the CS problem takes into account the uncertainty of
the yield rates. Let us assume that the yield rates can be modeled as a multinormal random vector
q2 = vec

(
(q2ij)i∈I,j∈J

)
. Now, the CS problem is a two-stage one: In the first stage, the manufac-

turer decides on the amount of land and the farms to devote to each crop. In the second stage, the
manufacturer will balance the need of each crop by purchasing or selling according to the yield ob-
served. The description of the random yield rates and the related parameters can be found in Table 3.

The objective of the CS problem is to decide how much land to devote to each crop on each farm in
order to obtain the feed ingredients for the next season at the minimum expected cost.

In Table 4 we have the CS decision variables. To formulate the CS problem we calculate the conditional
scenarios that approximate the multinormal random vector q2, by using Method 2 withR = 50 random
parameters and Method 1 with E = 33 discretization points and I0 = [µ− 4σ, µ+ 4σ[. The choice of
E = 33 was as follows. In order to tuneE, we considered the news vendor problem [10] with a normal
random demand and solved it analytically. Then we considered its scenario version by discretizing the
continuous random demand (Method 1 with E = 10, 20, . . . , 100). We observed that the scenario
optimal solution was of good quality compared to the analytical one for the discretizations with E ≥
30. For this reason, in the CS multi-farm feed manufacturer problem, we decided to use E ≈ 30 in
order to balance quality of the discretization and computational burden. Finally, we took E = 33
in order to have a discrete distribution with a single mode at µ, and in order to divide I0 into 33
subintervals of length σ/4 (approximately) which we found reasonable. Of course this was an heuristic
approach and, as already pointed in Section 3, the impact of the quantization method that one uses in
the conditional scenario approach is a matter that deserves further research.

Given that we set Er = E = 33 for all r ∈ R, the CS problem considers a total of R · E = 1650
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Table 3: Parameters of the CS multi-farm feed manufacturer problem.

Parameter Value Unit Description

q2 - tonnes/acre Random yield rates

q2 ∼ NR(µ,Σ)

µij q̄2ij tonnes/acre Expected yield rate of crop i

in farm j i ∈ I, j ∈ J
σij q̄2ij/4 tonnes/acre Standard deviation of q2ij i ∈ I, j ∈ J
ρi1j1,i2j2 0.7 - Correlation between q2i1j1 i1 ∈ I, j1 ∈ J

and q2i2j2 , i1j1 6= i2j2 i2 ∈ I, j2 ∈ J
σi1j1,i2j2 ρi1j1,i2j2 σi1j1σi2j2 (tonnes/acre)2 Covariance between q2i1j1 i1 ∈ I, j1 ∈ J

and q2i2j2 , i1j1 6= i2j2 i2 ∈ I, j2 ∈ J
R 50 - Number of random parameters R = I · J
Er 33 - Number of conditional scenarios r ∈ R

derived from the rth conditional

expectation

Table 4: Decision variables of the CS multi-farm feed manufacturer problem.

Decision Unit Description

û1ij - û1ij = 1, if crop i is raised in farm j i ∈ I, j ∈ J
û1ij = 0, otherwise

x̂1ij acres Land devoted to crop i in farm j i ∈ I, j ∈ J
ŷre2i tonnes Amount of crop i purchased re ∈ REr, i ∈ I

assuming the conditional scenario re

(under production shortage)

ẑre2i tonnes Amount of crop i sold re ∈ REr, i ∈ I
assuming the conditional scenario re

(under production excess)
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conditional scenarios. Then the CS problem (31)–(37), in this case, can be written as follows:

min
û,x̂,ŷ,ẑ

zCS =
∑

i∈I,j∈J
c1ij x̂1ij +

1

R

∑
re∈REr

∑
i∈I

p̂re
(
f2i ŷ

re
2i − g2i ẑ

re
2i

)
(46)

s.t.
∑
i∈I

x̂1ij ≤ b1j j ∈ J (47)∑
j∈J

q̂re2ij x̂1ij + ŷre2i − ẑre2i = b2i re ∈ REr, i ∈ I (48)

∑
j∈J

û1ij ≤ 2 i ∈ I (49)

x̂1ij ≤ û1ij b1j i ∈ I, j ∈ J (50)

û1ij ∈ {1, 0} i ∈ I, j ∈ J (51)

x̂1 ≥ 0 (52)

ŷre2 ≥ 0, ẑre2 ≥ 0 re ∈ REr. (53)

The main difference with the EV problem is that now the uncertainty is taken into account (by means
of 1650 conditional scenarios q̂re2 ). The resulting MILP problem has 50 binary variables, 33,050
continuous variables and 16,565 constraints. After solving the CS problem by using the MILP solver
(CPLEX), one obtains:

z∗CS = 409, 595 euros

x̂∗1 =



48 101 0 0 0

77 80 0 0 0

75 0 79 0 0

0 69 86 0 0

0 0 71 75 0

0 0 64 84 0

0 0 0 87 60

0 0 0 34 112

0 0 0 35 113

0 0 0 35 115



acres.

Unlike in Example 2, here we do not report the optimal vectors ŷ∗2 and ẑ∗2 given their high dimensions.

6.3 The SAA multi-farm feed manufacturer problem

In this context a natural question which arises is: what would be the performance of the RP problem
using the same number of scenarios as in the CS problem? We study this question in the following
example where the scenarios are randomly sampled. Solving the RP problem formulated in terms of a
set of randomly sampled scenarios can be considered as a simple version of the SAA method [27].

Example 4. (The SAA multi-farm feed manufacturer problem: uncertain yields)

In Table 5 we have the SAA decision variables: To formulate the SAA problem we consider S = 1, 650
scenarios randomly sampled from the multinormal random vector q2 defined in the previous example.
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Table 5: Decision variables of the SAA multi-farm feed manufacturer problem.

Decision Unit Description

ũ1ij - ũ1ij = 1, if crop i is raised in farm j i ∈ I, j ∈ J
ũ1ij = 0, otherwise

x̃1ij acres Land devoted to crop i in farm j i ∈ I, j ∈ J
ỹs2i tonnes Amount of crop i purchased s ∈ S, i ∈ I

(under production shortage)

z̃s2i tonnes Amount of crop i sold s ∈ S, i ∈ I
(under production excess)

Then the SAA feed manufacturer problem can be written as follows:

min
ũ,x̃,ỹ,z̃

zSAA =
∑

i∈I,j∈J
c1ij x̃1ij +

1

S

∑
s∈S

∑
i∈I

f2i ỹ
s
2i − g2i z̃

s
2i (54)

s.t.
∑
i∈I

x̃1ij ≤ b1j j ∈ J (55)∑
j∈J

q̃s2ij x̃1ij + ỹs2i − z̃s2i = b2i s ∈ S, i ∈ I (56)

∑
j∈J

ũ1ij ≤ 2 i ∈ I (57)

x̃1ij ≤ ũ1ij b1j i ∈ I, j ∈ J (58)

ũ1ij ∈ {1, 0} i ∈ I, j ∈ J (59)

x̃1 ≥ 0 (60)

ỹs2 ≥ 0, z̃s2 ≥ 0 s ∈ S. (61)

Notice that this problem corresponds to the RP problem (8)–(14) formulated in terms of 1, 650 ran-
domly sampled scenarios. The only difference with the CS multi-farm feed manufacturer problem is
the way it is used to approximate the random vector q2 (scenarios q̃s2 versus conditional scenarios q̂re2 ).
In this case, the resulting MILP problems have the same dimensions for the two approaches. After
solving the SAA problem by using the MILP solver (CPLEX) one obtains:

z∗SAA = 410, 654 euros

x̃∗1 =



0 58 0 75 0

0 55 0 0 77

0 46 0 0 87

0 0 83 0 56

0 0 0 47 87

0 0 102 51 0

91 91 0 0 0

0 0 50 106 0

109 0 0 71 0

0 0 65 0 93



acres.
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Table 6: Comparing the EV, CS and SAA solutions.

EV CS SAA E-SAA E-CS E-EV

Cost (euros) 401,274 409,595 410,654 413,724 413,758 431,096

Variation (%) –2.03 - - +1.01 +1.02 +5.25

Time (seconds) 0.006 0.800 93.800 190 190 190

6.4 Comparing the EV, CS and SAA solutions

Example 5. (The E-EV, E-CS and E-SAA multi-farm feed manufacturer problems: uncertain yields)

With the data of Examples 2, 3 and 4, let us compare the values EV, CE, SAA, E-EV, E-CS and E-SAA
which are the optimal values of the corresponding problems (E-EV stands for the Expected result of
using the EV solution, E-CS and E-SAA, analogously). To compute the E-EV we formulate the E-EV
problem:

min
ũ,x̃,ỹ,z̃

zE-EV =
∑

i∈I,j∈J
c1ij x̃1ij +

∑
s∈S

∑
i∈I

p̃s
(
f2i ỹ

s
2i − g2i z̃

s
2i

)
(62)

s.t.
∑
i∈I

x̃1ij ≤ b1j j ∈ J (63)∑
j∈J

q̃s2ij x̃1ij + ỹs2i − z̃s2i = b2i s ∈ S, i ∈ I (64)

∑
j∈J

ũ1ij ≤ 2 i ∈ I (65)

x̃1ij ≤ ũ1ij b1j i ∈ I, j ∈ J (66)

ũ1ij ∈ {1, 0} i ∈ I, j ∈ J (67)

(x̃1, ũ1) = (xref , uref ) (68)

x̃1 ≥ 0 (69)

ỹs2 ≥ 0, z̃s2 ≥ 0 s ∈ S, (70)

where we set the reference vector as (xref , uref ) = (x̄∗1, ū
∗
1) obtained by solving the EV problem.

Notice that this is nothing but the RP problem with the additional constraint (x̃1, ũ1) = (x̄∗1, ū
∗
1).

Also notice that in this example the RP problem has relatively complete recourse [10]. Therefore, any
reference solution (xref , uref ) which is feasible for the EV or CS problems will also be feasible for
the RP problem. It is well known that in this case z∗E-EV can be computed as follows [11]:

z∗E-EV =
∑

i∈I,j∈J
c1ij x̄

∗
1ij

+
∑
s∈S

∑
i∈I

p̃s
(
f2i

[
b2i −

∑
j∈J

q̃s2ij x̄
∗
1ij

]
+
− g2i

[∑
j∈J

q̃s2ij x̄
∗
1ij − b2i

]
+

)
,

where [ ]+ is the positive part, that is, given a scalar, say v, then [v]+ = max{0, v}. To set the E-EV
problem we have used S = 106 scenarios {q̃s2}s∈S randomly sampled from the multinormal random
vector q2 ∼ N50(µ,Σ). In this case one has p̃s = 1/S for all s ∈ S. On the other hand, the E-CS can
be obtained by solving the previous problem but setting the reference vector as (xref , uref ) = (x̂∗1, û

∗
1)

obtained by solving the CS problem. The E-SAA can be obtained analogously. The results have been
summarized in Table 6. In the first row we observe EV ≤ CS ≤ (E-SAA, E-CS and E-EV) as stated
in Propositions 1 and 3 and by the definition of the E-SAA. Notice that the EV problem ‘promises’ an
optimal cost which is misleading, since the true expected costs E-EV (431,096 euros) is worse than
the ‘promised’ one (401,274 euros). The same applies for the optimal SAA and CS costs and the
corresponding values E-SAA and E-CS. In the second row we have the variation relative to the CS
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value, the tightest bound. Notice that although in this case SAA is a lower bound for E-SAA, E-CS
and E-EV, there is not a theoretical guarantee for it. Considering that in this problem CS ≤ RP ≤
(E-SAA, E-CS and E-EV), this variation can be interpreted as a worst-case optimality gap, which is (P
− CS) / CS = 1.01%, 1.02% and 5.25% for P = SAA, CS and EV, respectively. The EV lower bound
is 2.03% worse than the CS counterpart. Finally, in the third row we have the CPU time (in seconds)
for solving the MILP problems corresponding to the EV, CS and SAA approaches. To compute the
E-SAA, E-CS and E-EV, we have used one million scenarios randomly sampled from q2 ∼ N50(µ,Σ)
and the CPU time has been 190 seconds in all the cases.

6.5 Comparing the CS and the SAA performances

In the previous numerical example, it is clear that, the CS approach outperforms the EV approach in
terms of obtaining a stronger lower bound and a good expected cost in a reasonable time (see Table
6). On the other hand, the CS approach, compared to the SAA approach with the same number of
scenarios, has the advantage of providing a theoretical lower bound for the optimal RP value but,
regarding the expected costs E-SAA and E-CS, the two methods obtain similar results (E-SAA =
413,724 and E-CS = 413,758, respectively).

The short CPU time of the EV problem is not surprising since it is a much smaller problem than the
corresponding CS and SAA problems. However, the difference is surprising between the CS and SAA
CPU times (0.8 and 93.8 seconds, respectively). In this section we further investigate this difference
by solving the multi-farm feed manufactured problem for different numbers of crops I and farms
J = bI/2c (largest integer that does not exceed I/2) reported in Table 7. The number of random
parameters R and the number of the rows and columns of the constraint matrix of the corresponding
MILP problems are also reported. Notice that instance 5 is the case analyzed in the previous sections.

The CS and SAA solutions are compared in Table 8, where the optimal value of problems CS, E-
CS, SAA and E-SAA is reported. The worst case optimality gap of the E-CS and E-SAA values is
computed by using the optimal CS value reported in the second column. The worst case optimality
gap is similar for the two approaches (slightly better for the SAA approach).

The CS and SAA solution times are compared in Table 9 where, for each approach, the LP bound
(obtained by solving LP relaxation of the corresponding MILP problem), the LP gap and the CPU
time to solve the MILP problem are reported. In the last column the ratio of the two LP gaps: ”SAA
LP gap” / ”CS LP gap” is reported. All the CS instances could be solved in less than three seconds.
However, in general, the SAA instances required (much) more time to be solved to the point that
the last four instances could not be solved within 3,600 seconds. In this case we only solved the
corresponding LP relaxation, as reported in Table 9, which took a few seconds for each instance.

The SAA results in Tables 8 and 9 were obtained by drawing a random sample of scenarios for each
instance. Therefore, the optimal value of the SAA problem is itself random. In order to analyze the
variability of the SAA results, we solved the SAA instances described in Table 7 ten times each, by
drawing a different random sample of scenarios. In Table 10 we report the resulting average and
standard deviation for the optimal value and the CPU time. These results are similar to the ones
reported in Tables 8 and 9 but with the additional variability information. Instances 7 to 10 could not
be solved within 3600 seconds for any of the scenario samples.

A possible reason for the faster performance of the CS approach is its smaller LP gap. Although for
the two approaches the LP gap is small, it happens that the SAA LP gap is several times the CS LP gap
(see the last column in Table 9). Of course, the results here reported correspond to a very small test and
therefore do not prove anything. They only show that the scenario selection may have some relevant
impact on the corresponding MILP problem (LP gap and solution time). This question deserves further
research.

17



Table 7: Size of the CS and SAA instances.

Instance I J R Scenarios Rows Columns

1 6 3 18 594 3,591 7,164

2 7 3 21 693 4,882 9,744

3 8 4 32 1,056 8,492 16,960

4 9 4 36 1,188 10,741 21,456

5 10 5 50 1,650 16,565 33,100

6 11 5 55 1,815 20,036 40,040

7 12 6 72 2,376 28,602 57,168

8 13 6 78 2,574 33,559 67,080

9 14 7 98 3,234 45,395 90,748

10 15 7 105 3,465 52,102 104,160

Table 8: Comparing the CS and SAA optimal values.

Instance CS E-CS Worst case SAA E-SAA Worst case

optimality optimality

(euros) (euros) gap (%) (euros) (euros) gap (%)

1 231,118 231,832 0.31 230,115 231,899 0.34

2 299,189 299,957 0.26 298,310 299,881 0.23

3 320,449 322,234 0.56 320,199 321,685 0.39

4 397,609 399,361 0.44 396,948 398,997 0.35

5 409,595 413,758 1.02 410,654 413,724 1.01

6 494,636 497,948 0.67 492,815 497,372 0.55

7 500,122 513,377 2.65 - - -

8 583,876 595,857 2.05 - - -

9 607,139 624,573 2.87 - - -

10 684,506 704,643 2.94 - - -
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Table 9: Comparing the CS and SAA solution times.

Instance CS problem (MILP) SAA problem (MILP) Ratio

LP bound LP gap CPU time LP bound LP gap CPU time LP gaps

(euros) (%) (seconds) (euros) (%) (seconds)

1 231,118 0.000081 0.1 230,103 0.005229 0.3 65

2 299,187 0.000713 0.2 298,310 0.000000 0.3 0

3 320,445 0.001387 0.4 320,178 0.006368 1.5 5

4 397,609 0.000298 0.4 396,928 0.005067 0.9 17

5 409,594 0.000279 0.8 410,315 0.082779 93.8 297

6 494,634 0.000456 0.9 492,739 0.015500 12.6 34

7 500,122 0.000000 1.3 505,185 - > 3,600 -

8 583,875 0.000212 1.5 588,285 - > 3,600 -

9 607,139 0.000000 2.2 615,554 - > 3,600 -

10 684,506 0.000000 2.7 693,843 - > 3,600 -

Table 10: Average results for the SAA approach.

Instance Optimal value CPU time

Average Std. deviation Average Std. deviation

(euros) (euros) (seconds) (seconds)

1 231,997 1,997 0.3 0.1

2 299,882 1,878 0.4 0.1

3 321,476 2,600 1.2 0.5

4 398,634 2,304 1.6 0.8

5 412,764 2,649 141.8 126.3

6 496,075 2,504 24.0 10.8

7 - - > 3,600 -

8 - - > 3,600 -

9 - - > 3,600 -

10 - - > 3,600 -
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7 Conclusions

In this paper we have considered the two-stage stochastic mixed-integer linear programming problem
with recourse which we have called the RP problem. We have also considered the EV problem as
an approximation to the RP problem. The contributions of this paper have been: to introduce the
CS problem, a new approximation to the RP problem based on conditional scenarios (a new concept
here introduced) and to propose and analyze some useful bounds related to the RP, EV and CS prob-
lems. The RP problem is, in general, a good choice to deal with parameter uncertainty. However, if
the RP problem results intractable, our suggestion is to use the CS problem, which requires a moder-
ate computational effort and favorably compares to the EV problem in order to deal with parameter
uncertainty.

From a practical point of view, the CS approach is appealing since the computation of the conditional
scenarios is straightforward. It only requires the computation and discretization of a set of conditional
expectations of the random vector that models the uncertain problem parameters. The number of
conditional scenarios thus constructed, say N, grows linearly with the number of random parameters
of the RP problem. In this way, the resulting CS problem has a moderate size (N times the size of the
EV problem). Of course, there is a price to be paid for this: the optimal CS solution is, in general,
suboptimal for the RP problem but hopefully better than the optimal EV solution.

In Section 6, we have also analyzed the performance of the RP problem with the same number of
(randomly generated) scenarios as in the CS problem (we have called it the SAA problem). We have
observed that the solution quality is similar for the CS and SAA approaches. However, we have also
observed that the solution time is much shorter for the CS method as reported in Tables 9, where the
CS instances show a smaller LP gap than the corresponding SAA instances (this could explain the
shorter CS solution time). Of course, with the results reported in this paper we can only formulate the
following conjecture which, in our opinion, deserves further research: Conjecture 1: ”The CS problem
usually has a smaller LP gap than the corresponding RP problem with the same number of (randomly
generated) scenarios”.

From a theoretical point of view, we have shown that in some cases the optimal RP cost can be bounded
by the optimal CS and EV costs. In these cases, the CS bound dominates the EV bound. The reason is
that the CS problem is a better approximation to the RP problem than the EV counterpart. Therefore,
one would expect that the E-CS would dominate the E-EV (Conjecture 2).

As a matter of further research, apart from trying to prove the previous two conjectures, we are plan-
ning to analyze the use of conditional scenarios in non-linear programming. Furthermore, as a first
step, we have applied the conditional scenario concept in a risk-neutral model. That is, it is based on
the expected cost and it does not incorporate any risk measure such as conditional value-at-risk [33]
and stochastic dominance [17]. As a second step, we are planning to incorporate some risk measure
into models based on conditional scenarios.
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8 Appendix: Proofs of the theoretical results of Section 5

8.1 Proof of Proposition 1

To prove the inequality z∗CS ≤ z∗RP we proceed as follows. Let us consider x̃∗ = (x̃∗1, x̃
∗
2(ξ̃)), an

optimal solution for the RP problem (1)–(7) with stochastic A2 and/or b2. Let us also assume that
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z∗RP is the corresponding optimal value. Now, based on this solution, we define a new point x̂+ =

(x̂+
1 , x̂

+
2 (ξ̂1), . . . , x̂+

2 (ξ̂R)) such that x̂+
1 = x̃∗1, x̂

+
2 (ξ̂r) = E[ x̃∗2(ξ̃) | ξ̃r ], for all r ∈ R and with

objective value zCS(x̂+). Notice that by definition x̂+
2 is a function of ξ̃r such that we could write

x̂+
2 (ξ̃r). However, we prefer to write x̂+

2 (ξ̂r) to indicate that x̂+
2 is the policy associated with the

conditional scenarios {ξ̂re}e∈Er , the support of ξ̂r. There is no ambiguity in using this notation since
there is a one-to-one correspondence between the set of random components of ξ̃, that is, {ξ̃r}r∈R and
the corresponding set of conditional expectations {ξ̂r}r∈R. Therefore in this paper x̂2(ξ̂r) and x̂2(ξ̃r)
denote the same policy.

Let us see that x̂+ thus defined is feasible for the CS problem (24)–(30). On the one hand, x̂+
1 satisfies

equation (25) by definition. On the other hand, we can see that x̂+
2 satisfies equations (26) and (28)

as follows. We know that x̃∗2(ξ̃) fulfills constraints (3) and (5). Then, by applying the conditional
expectation operator E[ · | ξ̃r ] to these constraints one obtains the following aggregated constraints
(further details on constraint aggregation by the conditional expectation operator can be found in [6]):

E[ Ã2 | ξ̃r ] x̃∗1 +B2 E[ x̃∗2(ξ̃) | ξ̃r ] = E[ b̃2 | ξ̃r ] w.p.1, r ∈ R
E[ x̃∗2(ξ̃) | ξ̃r ] ≥ 0 w.p.1, r ∈ R,

or equivalently

Âr
2x̂

+
1 +B2x̂

+
2 (ξ̂r) = b̂r

2 w.p.1, r ∈ R
x̂+

2 (ξ̂r) ≥ 0 w.p.1, r ∈ R.

Thus, x̂+ fulfils constraints (26) and (28) and therefore x̂+ is feasible for the CS problem. Now, let us
see that zCS(x̂+) = z∗RP .

zCS(x̂+) = cᵀ1x̂
+
1 +

1

R

∑
r∈R

cᵀ2 E[ x̂+
2 (ξ̂r) ]

= cᵀ1x̃
∗
1 +

1

R

∑
r∈R

cᵀ2 E[E[ x̃∗2(ξ̃) | ξ̃r ] ] (71)

= cᵀ1x̃
∗
1 +

1

R

∑
r∈R

cᵀ2 E[ x̃∗2(ξ̃) ]

= cᵀ1x̃
∗
1 + E[ cᵀ2 x̃

∗
2(ξ̃) ]

= z∗RP ,

where, in (71) we have used the law of total expectation [12, 19]. All in all, we have proved that given
an optimal RP solution x̃∗, there exists a feasible CS solution x̂+ with objective value z∗RP and this
proves z∗CS ≤ z∗RP .

The other inequality, z∗EV ≤ z∗CS , can be proved as follows. First, we take

x̂∗ = (x̂∗1, x̂
∗
2(ξ̂1), . . . , x̂∗2(ξ̂R)),

an optimal CS solution with objective value z∗CS . Then, we define R new points x̄r = (x̄r1, x̄
r
2) such

that x̄r1 = x̂∗1 and x̄r2 = E[ x̂∗2(ξ̂r) ] for all r ∈ R. It is easy to see that x̄r is feasible for the EV problem,
for all r ∈ R (it is enough to aggregate the CS constraints (26) and (28) by the expectation operator
E[ · ]). Now, given that each x̄r is feasible for the EV problem, one has:

z∗EV ≤ c
ᵀ
1x̄

r
1 + cᵀ2x̄

r
2 = cᵀ1x̄

r
1 + cᵀ2E[ x̂∗2(ξ̂r) ] r ∈ R.

By adding these R inequalities one obtains:

R z∗EV ≤ R cᵀ1x̄
r
1 +

∑
r∈R

cᵀ2E[ x̂∗2(ξ̂r) ],
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which implies

z∗EV ≤ c
ᵀ
1x̄

r
1 +

1

R

∑
r∈R

E[ cᵀ2x̂
∗
2(ξ̂r) ] = z∗CS ,

as we wanted to prove.

Remark 3. As pointed out in Section 1, the CS approach can be seen as an aggregation method. More
specifically, under the hypothesis of Proposition 1 (A2 and/or b2 stochastic and J2 = ∅), it can be seen
that the CS problem is equivalent to

min
x̃

z = cᵀ1x̃1 + E[ cᵀ2x̃2(ξ̃) ]

s.t. A1x̃1 = b1

E[ Ã2 | ξ̃r ]x̃1 +B2E[ x̃2(ξ̃) | ξ̃r ] = E[ b̃2 | ξ̃r ] w.p.1, r ∈ R (72)

E[ x̃2(ξ̃) | ξ̃r ] ≥ 0 w.p.1, r ∈ R (73)

x̃1 ≥ 0

x̃1j integer j ∈ J1,

where, as we already said, constraints (72) and (73) are obtained by aggregating constraints (3) and (5)
by the conditional expectation operator E[ · | ξ̃r ]. Thus, for example in (72), given any realization ξ̃r,
one computes

E[ b̃2 | ξ̃r ] =
∑

b̃2∈Sb̃2

b̃2 g(b̃2 | ξ̃r),

where Sb̃2
is the support of b̃2 and the aggregation weights are given by g(· | ξ̃r), the conditional

probability function of b̃2 given ξ̃r = ξ̃r.

8.2 Proof of Proposition 2

To prove the inequality z∗CS ≤ z∗EV we proceed as follows. Let us consider x̄∗ = (x̄∗1, x̄
∗
2), an optimal

solution for the EV problem (15)–(20) with objective value z∗EV . Now, based on this solution, we
define a new point x̂+ = (x̂+

1 , x̂
+
2 (ξ̂1), . . . , x̂+

2 (ξ̂R)) such that x̂+
1 = x̄∗1, x̂

+
2 (ξ̂r) = x̄∗2 for all r ∈ R.

Since A2, B2 and b2 are deterministic, it is clear that x̂+ is feasible for the CS problem. Now let us see
that zCS(x̂+) = z∗EV .

zCS(x̂+) = cᵀ1x̂
+
1 +

1

R

∑
r∈R

E[ ĉr ᵀ2 x̂+
2 (ξ̂r) ]

= cᵀ1x̄
∗
1 +

1

R

∑
r∈R

E[ ĉr ᵀ2 x̄∗2 ]

= cᵀ1x̄
∗
1 +

1

R

∑
r∈R

c̄ᵀ2x̄
∗
2 (74)

= z∗EV , (75)

where, in (74) we have used that E[ ĉr2 ] = E[E[ c̃2 | ξ̃r ] ] = E[ c̃2 ] = c̄2 (the second equality is
justified by the law of total expectation). We have shown that given an optimal EV solution x̄∗ there
exists a feasible CS solution x̂+ with objective value z∗EV and this proves z∗CS ≤ z∗EV .

The other inequality, z∗RP ≤ z∗CS , can be proved as follows. Take x̂∗ = (x̂∗1, x̂
∗
2(ξ̂1), . . . , x̂∗2(ξ̂R)),

an optimal CS solution with objective value z∗CS . Then, define R new points x̃r = (x̃r1, x̃
r
2) such that
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x̃r1 = x̂∗1 and x̃r2 = x̂∗2(ξ̂r), for all r ∈ R. We also need the following result (based on the law of total
expectation):

E[ c̃ᵀ2x̂
∗
2(ξ̂r) ] = E[ c̃ᵀ2x̂

∗
2(ξ̃r) ] = E[E[ c̃ᵀ2x̂

∗
2(ξ̃r) | ξ̃r ] ]

= E[E[ c̃ᵀ2 | ξ̃r ] x̂∗2(ξ̃r) ] = E[ ĉr ᵀ2 x̂∗2(ξ̃r) ] = E[ ĉr ᵀ2 x̂∗2(ξ̂r) ], (76)

where we have used that x̂∗2(ξ̂r) can also be written as x̂∗2(ξ̃r). It is easy to see that x̃r is feasible for
the RP problem, for all r ∈ R (by hypothesis, only c2 is stochastic). Therefore one can write:

z∗RP ≤ c
ᵀ
1x̃

r
1 + E[ c̃ᵀ2x̃

r
2 ]

= cᵀ1x̂
∗
1 + E[ c̃ᵀ2x̂

∗
2(ξ̂r) ]

= cᵀ1x̂
∗
1 + E[ ĉr ᵀ2 x̂∗2(ξ̂r) ] r ∈ R,

where we have used (76). Now, by adding these R inequalities one obtains:

R z∗RP ≤ R cᵀ1x̂
∗
1 +

∑
r∈R

E[ ĉr ᵀ2 x̂∗2(ξ̂r) ],

which implies

z∗RP ≤ c
ᵀ
1x̂
∗
1 +

1

R

∑
r∈R

E[ ĉr ᵀ2 x̂∗2(ξ̂r) ] = z∗CS , (77)

as we wanted to prove.

8.3 Proof of Proposition 3

Let us prove the left-hand side inequality first. The reason is that to obtain z∗E-EV we have to solve the
RP problem with the additional constraint x̃1 = x̄∗1, which tightens it. The analogous reason applies
for the E-CS case.

8.4 Proof of Proposition 4

On the one hand, by Proposition 3 one has z∗RP ≤ z∗E-EV . Thus, to prove the left-hand side chain
of inequalities it is enough to show that z∗E-EV ≤ z∗EV . To prove it, let us consider x̄∗ = (x̄∗1, x̄

∗
2)

an optimal solution for the EV problem (15)–(20). Let us also assume that z∗EV is the corresponding
optimal value. Now, based on this solution, we define a new point x̃+ = (x̃+

1 , x̃
+
2 (ξ̃)) such that

x̃+
1 = x̄∗1, x̃

+
2 (ξ̃) = x̄∗2. It is easy to see that the point x̃+ is feasible for the E-EV problem (the RP

problem plus the additional constraint x̃1 = x̄∗1). Now, let us see that zE-EV (x̃+) = z∗EV .

zE-EV (x̃+) = cᵀ1x̃
+
1 + E[ c̃ᵀ2 x̃

+
2 (ξ̃) ]

= cᵀ1x̄
∗
1 + E[ c̃ᵀ2 x̄

∗
2 ]

= cᵀ1x̄
∗
1 + c̄ᵀ2x̄

∗
2

= z∗EV .

We have shown that given an optimal EV solution x̄∗ there exists a feasible E-EV solution x̂+ with
objective value z∗EV and this proves z∗E-EV ≤ z∗EV .

On the other hand, also by Proposition 3, one has z∗RP ≤ z∗E-CS . Thus, to prove the right-hand side
chain of inequalities it is enough to show that z∗E-CS ≤ z∗CS . This inequality can be proved in the
way as the inequality z∗RP ≤ z∗CS of Proposition 2. The only difference is that the E-CS problem
corresponds to the RP problem plus the additional constraint x̃1 = x̂∗1, and this constraint is also
fulfilled by the new points x̃r = (x̃r1, x̃

r
2) = (x̂∗1, x̂

∗
2(ξ̃r)) for all r ∈ R, defined in the proof of

Proposition 2.
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