
Solving the Quadratic Assignment Problem Using

Semi-Lagrangian Relaxation

Huizhen Zhang1,*
 Cesar Beltran-Royo2

 Bo Wang1
 Liang Ma1 Ziying Zhang3

1. School of Management, University of Shanghai for Science and Technology, Shanghai 200093, P.R.China;

2. Department of Statistics and Operations Research, Rey Juan Carlos University, Mostoles (Madrid) 28933,

Spain;

3. School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, P.R.China

Abstract: The Semi-Lagrangian relaxation (SLR), a

new exact method for combinatorial optimization

problems with equality constraints, is applied to the

quadratic assignment problem (QAP). A dual ascent

algorithm with finite convergence is developed for

solving the Semi-Lagrangian dual problem associated

to the QAP. We have performed computational

experiments on 30 moderately difficult QAP instances

by using the mixed integer programming solvers,

Cplex, and SLR+Cplex, respectively. The numerical

results not only further illustrate that the SLR and the

developed dual ascent algorithm can be used to solve

the QAP reasonably, but also disclose an interesting

fact: comparing with solving the unreduced problem,

the reduced oracle problem cannot be always

effectively solved by using Cplex in terms of the CPU

time.

Keywords: Quadratic assignment problem

(QAP), Semi-Lagrangian relaxation (SLR),

Lagrangian relaxation, Dual ascent algorithm

1 Introduction

The quadratic assignment problem (QAP) is

one of the most well-known and difficult

NP-hard combinatorial optimization problems.

Even finding an -approximate solution is

difficult [1]. It can be applied in several fields

such as backboard wiring [2], typewriter

keyboards and control panels design [3],

scheduling [4], numerical analysis [5], etc.

Moreover, many well-known classical

combinatorial optimization problems such as

the traveling salesman problem, the graph

partitioning problem and the maximum clique

problem, can be reformulated as special cases

of the QAP, see [6] and [7] for more details.

 In general, the QAP can be described as a

one-to-one assignment problem of n facilities

to n locations, which minimizes the sum of the

total quadratic interaction cost, the flow

between the facilities multiplied by their

distances, and the total linear cost associated

with allocating a facility to a certain location.

Manuscript received May 4, 2015.

*Corresponding author.

This work was supported by the National Natural

Science Foundation of China (71401106), the

Innovation Program of Shanghai Municipal

Education Commission (14YZ090), the Shanghai

Natural Science Foundation (14ZR1418700), the

Shanghai First-class Academic Discipline Project

(S1201YLXK), the Hujiang Foundation of China

(A14006), the grant S2009/esp-1594 from the

Comunidad de Madrid (Spain) and the grant

MTM2012-36163-C06-06 from the Spanish

government.

Consider the set N={1,2,…,n}and three n n

matrices F=(
ijf), D=(

ijd) and C=(
ijc). The

QAP with coefficient matrices F, D and C can

be stated as follows:

1 1 1 1 1 1

min
n n n n n n

ik jl ij kl ij ij

i j k l i j

f d x x c x

x X

, (1)

where

1

 1, X x N

n

ij

j

x i , (2)

1

1, N

n

ij

i

x j , (3)

 0,1 , , N ijx i j . (4)

ikf denotes the amount of flow between

facilities i and k,
jld denotes the distance

between locations j and l, and
ijc denotes the

cost of locating facility i at location j.
ijx =1if

facility i is assigned to location j, otherwise,

ijx =0.

 In [8] a more general expression of (1)

was introduced by using a four-dimensional

array
ijklq instead of the flow-distance

products
ik jlf d :

1 1 1 1 1 1

min
n n n n n n

ijkl ij kl ij ij
x X

i j k l i j

q x x c x

 . (5)

 The QAP has drawn the researcher’s

attention worldwide and extensive research

has been done since it was proposed by

Koopmans and Beckmann in 1957 [9]. For

example, a complete study of valid

inequalities, facets and lifting theorems can be

found in [10, 11, 12], several linearizations of

the objective function (1) are achieved by

defining new variables and introducing new

linear (and binary) constraints [13, 14, 15],

and a number of bounding techniques, such as

Gilmore-Lawler type bounds [16], convex

quadratic programming bound [17], bounds

based on dual approach and bounds based on

semidefinite programming relaxation [18, 19],

have also been developed. Another example is

solution techniques, some of the most

challenging QAP instances have been solved

by exact methods and heuristic algorithms like

simulated annealing [20], Tabu search [20, 21],

migrating birds optimization algorithm [22],

and so on. The readers can also refer to the

review papers [23, 24] and books/book

chapters [6, 7, 11, 25] for details of

applications, theory and algorithms of the

QAP.

 Lagrangian relaxation is one of the most

popular bounding techniques in combinatorial

optimization [26] and it has also been used to

solve the QAP by combining with branch and

bound [27, 28]. Semi-Lagrangian relaxation

(SLR), a new type of Lagrangian relaxation

with zero duality gap, has been proposed in

recent years and has allowed to solve

large-scale combinatorial optimization

problems with equality constraints by means

of general purpose mixed integer

programming solvers [29, 30]. However, as

far as we know, the SLR applied to the QAP

has not been reported in literature. In this

paper, we will investigate whether the SLR

can be applied to effectively solve the QAP:

Are the corresponding subproblems tractable?

Can they be solved by standard mixed integer

programming solvers as for example Cplex?

 In order to implement the SLR to solve

the QAP, the starting point is the reduced

linearizations of the QAP proposed in [31],

named QAP-I and QAP-II. These

formulations have a reduced number of

constraints and therefore seem well suited for

the SLR in order to consider a reduced

number of Lagrangian multipliers (dual

variables). Furthermore, a dual ascent

algorithm is proposed to solve the

corresponding SLR dual problem. Finally, to

investigate the effectivity of the SLR on

solving the QAP, we use it to solve a set of 30

instances from the QAP library QAPLIB [32],

which range from 12 to 32 facilities/locations.

 This paper is organized as follows: In

Section 2 we briefly review the main

properties of the SLR. In Section 3 we

introduce QAP-I and QAP-II, two reduced

linearizations of the QAP. In Section 4, the

SLR is applied to formulations QAP-I and

QAP-II, and a dual ascent algorithm is

proposed for solving the corresponding SLR

dual problems. In Section 5, we report the

results of the computational experiment

intended to compare the plain use of Cplex

versus the combined use of Cplex and SLR.

Finally, in Section 6 we conclude.

2 Semi-Lagrangian relaxation

The concept of SLR was introduced in [29]

and applied to the uncapacitated facility

location problem in [30]. In this section, we

summarize the main results of these two

papers in Theorem 1. Consider the following

problem, to be named “primal” henceforth:

* min T
x

z c x , (6a)

s.t. Ax b , (6b)

 P N
n

x X , (6c)

where R R
m n

A , the components of mRb and

R
n

c are nonnegative. P is a polyhedral set,

0X and problem (6) is feasible.

 The SLR consists in substituting the

constraint Ax b by the equivalent pair of

constraints Ax b and Ax b , and then

relaxing Ax b only. Thus we obtain the

SLR dual problem:

max ()

*L SLR
u U

L u , (7)

where u is the SLR multiplier vector (dual

variables),
 RmU and ()SLRL u is the SLR

dual function defined as

() min () T T

SLR
x

L u c x u b Ax , (8a)

 s.t. Ax b , (8b)

 x X , (8c)

Note that to calculate ()SLRL u we have

to solve problem (8), which we call the oracle

at u. Also note that with our assumptions its

feasible region is bounded. We also have that

0x is feasible, hence problem (8) has an

optimal solution. ()SLRL u is well-defined,

but the minimizer in (8) is not necessarily

unique. With some abuse of notation, we write

() arg min{ ()

, },

T T

x
x u c x u b Ax

Ax b x X

 (9)

to denote one such minimizer.

We denote X
*
, U

*
and X(u) the set of

optimal solutions of problems (6), (7) and (8),

respectively. We say that (x
*
, u

*
) is an optimal

primal-dual point if u
* int(U

*
) and x

*X(u
*
)

∩X
*
. Given two sets

1G and
2G , their addition

corresponds to
1 2 1 2 1 1{ : and G G g g g G

2 2 }g G . For any set G, int()G stands for its

interior.

Theorem 1 [29, 30] The following

statements hold.

1. ()SLRL u is concave and b-Ax(u) is a

subgradient at u.

2. ()SLRL u is monotone and () SLRL u

()SLRL u if u u , with strict inequality if

 u u and *u U .

3. * *

 R
m

U U ; thus U
*

is an unbounded

(convex) set.

4. If x(u) is such that Ax(u)=b, then

*u U and *()x u X .

5. Conversely, if *int()u U , then

any *()x u X .

6. The SLR closes the duality gap for

problem (6), that is,
* *z L .

3 Reduced QAP linearizations

Here we briefly review the reduced QAP

linearizations proposed in [31], QAP-I and

QAP-II which are derived by eliminating

constraints and variables of the Adams and

Johnson linearization [14], respectively. First,

the following formulation QAP-I is proposed

in [31] by eliminating the symmetry

constraints of the Adams and Johnson

linearization.

QAP-I:

,
1 1 1 1

min
n n

ijkl ijkl ij ij

i k n j l n i j

q y p x

x y

, (10)

s.t.
1,

,

, , , ,

n

ijkl ij

l l j

y x

i j k i k

N

 (11)

1,

,

, , , ,

n

ijkl kl

j j l

y x

i k l i k

N

 (12)

 0 , 1 ,

, , , , , ,

i j k ly

i j k l i k l j

 N
 (13)

x X , (14)

where
ijkl ijkl klijq q q and

ij ij ijijp c q .

Second, formulation QAP-II is further

presented in [31] by eliminating variables in

the case of a sparse cost matrix.

QAP-II:

0

,
1 1 1 1

min
n n

ijkl ijkl ij ij

i k n j l n i j
ik

q y p x

x y

F

, (15)

s.t.
1,

0

,

, , , , ,

n

ijkl ij

l l j

y x

i j k i k ik

N F

 (16)

1,

0

,

, , , , ,

n

ijkl kl

j j l

y x

i k l i k ik

N F

 (17)

0

0 , 1 ,

, , , , ,

, ,

ijkly

i j k l i k

l j ik

N

F

 (18)

x X , (19)

where
0F is the index set of zero flows, i.e.,

 0 (,) 0iki k f F N N .

The following result will be used in

Section 4 to derive a dual ascent algorithm

intended to solve these two formulations.

Theorem 2 [31] If * *(,)x y is an optimal

solution of QAP-I (or QAP-II), then
*

ijkly

* *

ij klx x (, , , ,i j k lN ,)i k l j .

As shown in [31], formulations QAP-I

and QAP-II have a reduced number of

constraints and therefore seem well suited for

the SLR in order to consider a reduced

number of Lagrangian multipliers (dual

variables).

4 Semi-Lagrangian relaxation of

the QAP linearization

Before applying the SLR method we stress the

following facts:

 Formulations QAP-I and QAP-II are

simpler compared with other QAP

linearizations, such as Adams and

Johnson linearization, Frieze and

Yadegar linearization, Padberg and Rijal

linearization [6, 25, 11].

 The number of ijkly variables is 4()n .

Hopefully many of these variables can be

fixed to “0” in the SLR framework.

 It is unnecessary to fix variables
ijx ,

since the number of these variables

is 2()n .

 If 0 F in QAP-II, then QAP-II is

equivalent to QAP-I. Thus, in this section

we only present the implementation of

the SLR to solve QAP-I and the related

theoretical results. Formulation QAP-II

can be solved in a similar way by the

SLR method.

4.1 Semi-Lagrangian dual problem

Following the ideas of the preceding Section 2,

we apply the Semi-Lagrangian relaxation to

QAP-I and obtain the SLR dual problem:

max ()
SLR

u
L u , (20)

with the oracle (dual function)

,
() : min (, ,)

SLR
x y

L u L u x y , (21)

s.t. x X , (22)

1,

,

, ,

n

ijkl ij

l l j

y x

i j k ,i < k,

N

 (23)

1,

,

, ,

n

ijkl kl

j j l

y x

i k l ,i < k,

N

 (24)

 0 , 1 ,

, , ,

i j k ly

i j k l , i < k , j l ,

 N

 (25)

where

1 1 1, 1, 1 1

1 1 1, 1,

1 1 1, 1,

1 1 1,

(, ,)

()

(

n n n n n n

ijkl ijkl ij ij

i j k k i l l j i j

n n n n

ijk ij ijkl

i j k k i l l j

n n n n

ijkl ijk ijkl

i j k k i l l j

n n n

ijk ij ij

i j k k i

q y p x

u x y

q u y

u p x

q

L u x y

1 1 1, 1, 1 1

)
n n n n n n

ijkl ijkl ij ij

i j k k i l l j i j

u y u x

with () :ijkl ijkl ijkq q u u and
1,

:
n

ij ijk ijk k i
u u p

 .

The oracle problem ()SLRL u contains the

assignment constraints over x, thus x(u)

computed by solving (21)-(25) is a feasible

solution for (5) and can be used to calculate an

upper bound.

From (21)-(25), it is easy to show that

there exist optimal solutions (x(u),y(u)) of the

SLR oracle ()SLRL u such that () 0ijkly u if

() 0ijklq u . Therefore, in the oracle ()SLRL u

some ()ijkly u can be fixed to “0” in advance

if their () 0ijklq u . This operation, which

reduces the size of the oracle, is quite common

in Lagrangian relaxation applied to

combinatorial optimization. There, using some

appropriate argument, one fixes some of the

oracle variables and obtains a reduced-size

oracle called the core problem. Usually we

have (much) fewer variables ()ijkly u in the

core problem. Roughly speaking, if the size of

the core problem is small enough, it will be

possible to solve it by an Integer Programming

solver (e.g. Cplex, etc.), and this is the main

advantage of the core problem.

To control the number of variables

()ijkly u in the core problem, we introduce the

sorted costs. For each (, ,)i j k (1 ,i j n ,

k i), we sort the costs ijklq lN , and get the

sorted costs:

1 2 n

ijk ijk ijkq q q .

For a given u and a triple (, ,)i j k

(1 i k n , jN), if u is such that

r

ijk ijku q (1,2, ,r n), then the triple

(, ,i j k) will have at most r-1 related

variables
ijkly with strictly negative reduced

cost.

On the other hand, by applying Theorem

1, Statement 1, we have that ()SLRL u is

concave and vector ()S u with

1,

() () () ,

1 , , , ,

n

ijk ij ijkl

l l j

s x y

i j k n k i

u u u (26)

is a subgradient of ()SLRL u at u.

The following result gives a sufficient

optimality condition for the SLR dual problem

(20).

Theorem 3 * n
u q u U and nu q

*int()u U .

Proof: Consider the oracle (21)-(25), and

assume nu q . If there exists an optimal

solution of the oracle such that
1,

()
n

ijkll l j
y

 u

()ijx u , (, ,)i j k and k i , then, by Theorem

1 Statement 4, this solution is optimal for the

original problem. Assume that we have an

oracle solution with
1,

() 0 () 1
n

ijkl ijl l j
y x

 u u for

some (, ,)i j k and k i , and let lbe such that

() 1klx u for the given k . By hypothesis,

0n

ijkl ijk ijkl ijkq u q q . Thus, one can set

() () 1ijkl ijy x u u without increasing the

objective value. The modified solution is also

optimal. Hence, there exists an optimal oracle

solution with
1,

() ()
n

ijkl ijl l j
y x

 u u , (, ,)i j k

(k i) and *u U . Furthermore, according to

the Statement 3 of Theorem 1, we can show

that *int()u U if nu q .

■

4.2 Solving the QAP Semi-Lagrangian

dual problem

Similar with Lagrangian relaxation, it is a

common approach to develop a dual ascent

method to solve the combinatorial

optimization problem when the SLR is

implemented. However, the SLR solving

procedure based on dual ascent usually takes a

number of time consuming iterations for

large-scale problems. Initializing and updating

the SLR multiplier vector are the key

techniques to reduce the number of iterations.

We now present a specialized version of the

dual ascent method [30] for formulation

QAP-I, which involves a pre-processing phase

of initializing the SLR multiplier vector with a

near optimal one, and a process of updating

the multiplier vector based on the Theorem 2.

4.2.1 Initializing the multiplier vector

By Theorem 1, Statement 3, we know that the

set of optimal dual solutions *U is convex and

unbounded such that * *R m
U U . In Fig.1 we

have a possible representation of this set. We

can define the set of non-dominated optimal

solutions as the Pareto frontier of the optimal

set U
*
. Fig.1 pictures a possible trajectory of

multiplier from the origin to the set. It is easy

to observe that an optimal solution

((), ())x u y u of the oracle (21)-(25) has the

property that () 0ijkly u if the corresponding

reduced cost ()ijkl ijkq u is nonnegative. At

the origin O (u=0) of Fig.1, the oracle is easy

and has the trivial solution () 0y u , but a

number of time consuming iterations will be

needed to obtain an optimal primal-dual

solution * * *(((), ()),)x u y u u . At point C , far

inside the optimal set, all reduced costs are

negative, the oracle is essentially equivalent to

the original problem QAP-I and is difficult to

be solved. The difficulty in solving the oracle

increases as one progresses along the

pathO -C , that is, as one increases u. A key

issue is how to initialize the multiplier vector

u near to the Pareto frontier of U
*
, point A in

Fig.1, where the oracle problem involves only

a few variables. At point A the oracle may be

easy and one may only need to solve a short

sequence of moderately difficult oracles in

order to get an optimal primal-dual solution.

Fig.1 Path from the origin multiplier vector O to

optimal set U*

Here we initialize the SLR multiplier

vector by using the formula

(1)(1)1 ,

1 , , , ,

r n

ijk ijku q

i j k n k i

 (27)

where 0 1 , (1)(1)r n denotes the

smallest integer which is larger than r

(1)(1)n , 0min{ , {1,2, ,r

ijk ijkr r q u r

1}}n , and 0 1n

ijk ijku q is the initial guess for

*

ijku . Obviously, initial multiplier vector 1u is a

point of the line connecting points rq and

1 1(,0 1)n n n

ijk ijkq q q which is an interior

point of U
*
.

4.2.2 Updating the multiplier vector

Suppose that ((), ())t tx u y u is the optimal

solution of the oracle ()t

SLRL u . For any given

triple (, ,)i j k (1 , , ,)i j k n k i , if ()t

ijks u

1,
() () 1

nt t

ij ijkll l j
x y

 u u , then there exists

l N such that () () 1t t

kl ijx x u u and ()t

ijkly u

0 . Furthermore, we can conclude that

()t

ijkly u was fixed to “0” at the tth iteration

because of () 0t t

ijkl ijkl ijkq q u u (assume

that () 0t

ijklq u , we can define a new feasible

solution for the oracle ()t

SLRL u , say ((), ())t tx u y u ,

which is equal to ((), ())t tx u y u except for

component with the given (, , ,)i j k l . For this

component, we set () 1
t

ijkly u , and therefore

(, (), ()) (, (), ())t t t t t tL u x u y u L u x u y u , which

contradicts the fact that ((), ())t tx u y u is the

optimal solution of the oracle ()t

SLRL u). In

order to make 1 1 1() () ()

 t t t

ijkl ij kly u x u x u at the

(t+1)th iteration, the variable 1()

t

ijkly u should

not be fixed to “0”. Here we update the SLR

multiplier 1t

ijk ijklu q

 (0 1) for obtaining

negative 1()t

ijklq

u (1 1()t t

ijkl ijkl ijk ijklq q u q

 u

0i j k lq).

To maintain the number of variables as low

as possible, at each iteration we add at most one

variable for per triple (, ,)i j k if () ()t t

ijk ijs xu u

1,
() 0

n t

ijkll l j
y

 u , that is, we update t

ijku from

r

ijkq to 1 1t r

ijk ijku q . See the Step 6 of

Algorithm 1 in section 4.2.3.

4.2.3 Dual ascent algorithm

Combining with the idea of subsection 4.2.1

and 4.2.2, we develop the following

Algorithm 1 for solving the QAP-I.

Algorithm 1

 Input: Data of the QAP-I instance,

and 0 0u initial guess for an

optimal point for the SLR dual

problem (20).

 Output: * * *((), (),)x u y u u optimal

primal-dual point or * *((), ())x u y u

optimal primal point for the QAP-I

instance.

1. Initialization:

 For each (, ,)i j k (1 , , i j n k i),

sort the costs ijklq lN to obtain the

sorted costs:

1 2 n

ijk ijk ijkq q q .

 For each (, ,)i j k (1 , , i j n k i),

set 1n n

ijk ijkq q for a 0 1 .

 Set 1,2, , 1n N .

 Set upper bound UB=inf and the best

upper bound BestUB=inf.

 Solve the linear programming (LP)

relaxation of the QAP-I to obtain the

optimal objective value (LP Cost),

and set lower bound LB=LP Cost.

2. Initial dual point:

Set 1t . For each (, ,)i j k , set r

0min{ , }r

ijk ijkr q u r N , and initialize t

ijku

by using the formula (27).

3. Oracle call:

 Variable fixing: For each (, , ,)i j k l ,

fix ()t

ijkly u to “0” if () 0ijklq u .

 Solve the core problem (21)-(25) to

obtain ()t

SLRL u as well as ((),tx u

())t
y u .

 Compute the subgradient ()t
S u such

that

1,

() () () ,

1 , , , .

n
t t t

ijk ij ijkl

l l j

s x y

i j k n k i

u u u (28)

 Update the lower bound

()LB
t

SLRL u . (29)

4. Heuristic call: Compute UB and

BestUB.

1 1 1 1

1 1

() ()

()

n n n n
t t

ijkl ij kl

i j k l

n n
t

ij ij

i j

q x x

c x

UB u u

u

 (30)

 m i n , B e s t U B U B B e s t U B (31)

5. Stopping criterion:

If () 0t
S u , stop with an optimal

primal-dual point * * *((), (),) ((),tx u y u u x u

(),)t t
y u u . If LB=BestUB, update ()t

ijkly u

() ()t t

ij klx xu u (1 i k n ,1 j l n) and

stop with an optimal primal point *((),x u

*()) ((), ()) t ty u x u y u .Otherwise, proceed to

Step 6.

6. Dual point updating:

For per triple (, ,)i j k , if () 1t

ijks u , find

l such that () 1
t

klx u and update 1t

ijk ijklu q

 , otherwise update 1 min{t r r

ijk ijk ijku q q

, 1 1}t

ijku r n .

7. Set 1t t and return to Step 3.

Theorem 4 Algorithm 1 is a dual ascent

method and it converges to an optimal dual

point * *u U (* U) or an optimal primal

point * *((), ())x u y u after finitely many

iterations.

Proof: Let ((), ())t tx u y u be the optimal

solution of the oracle ()t

SLRL u (t is a finite

positive integer). We have four exclusive

cases:

Case 1 LB BestUB . At least for one

component of ()t
S u , say (, ,)i j k , there exists

() 1
t

i j ks u and 1t n

i j k i j ku q

 . In this case, there

exist () 1t

i jx u and () 1t

k lx u (k i , l

j), and () 0t

i j k ly u because t

i j k l i j kq u . Then

t

i j ku
can be updated by the Step 6 of Algorithm

1, and 1t t

i j k i j k l i j ku q u

 .

By Theorem 1, Statement 2, we have

that 1() () t t

SLR SLRL u L u .

Case 2 LB BestUB . All of the nonzero

components of ()tS u have the associated

multipliers 1t n

ijk ijku q . We will prove by

contradiction that this case cannot happen.

For convenience, we can define T

1,
{(, ,) () 0 () 1,1 , ,

n t t

ijkl ijl l j
i j k y x i j k

 u u

 and }n k i . In this case, let l be such that

() 1t

klx u for any (, ,)i j k T , then one can

modify a solution by setting ()t

ijkly u

() () 1t t

ij klx x u u with decreasing the

objective value because of t

ijkl ijk ijklq u q

1 0n

ijkq , which contradicts ((), ())t tx u y u , the

optimal solution of the oracle ()t

SLRL u .

Case 3 =LB BestUB and () 0
t

S u . In

this case, ()t
x u is the optimal solution for

formulation (5). At Step 5, ((), ())t tx u y u

updated by using () () ()t t t

ijkl ij kly x xu u u (1 i

k n ,1 j l n) is optimal to QAP-I (see

Theorem 2).

Case 4 =LB BestUB and () 0
t

S u . By

Theorem 1, Statement 4, we have *tu U .

■

5 Computational experiments

As we have already stated, the objective of

this paper is to study whether the SLR can be

implemented to solve the Quadratic

Assignment Problem (QAP) effectively, when

one uses a general purpose mixed integer

linear programming solver combined with a

standard PC. To study the performance of the

SLR solution procedure, a set of instances

from QAPLIB [32] was solved by combining

the developed dual ascent method, Algorithm

1 in the previous Section, with Cplex (default

settings).

In our numerical experiments, the CPU

time limit was set to 14400 seconds. The

experiments were conducted on a laptop with

a processor Intel Core Duo 2.80GHz and with

3.95 GB of RAM. Cplex 12.5 interfaced with

Matlab R2010a was used to solve the QAP

instances. On the one hand, we used plain

Cplex to assess the difficulty of the QAP

instances and on the other hand, we also used

Cplex as the integer programming solver to

compute ()SLRL u at each iteration of

Algorithm 1. For convenience, we set
0u

equal to the optimal vector of dual variables

associated with constraints (11) of the LP

relaxation of QAP-I (constraints (16) for

QAP-II) in Algorithm 1. The tuning

parameters of Algorithm 1, and were set

to 0.5.

In Table 1 we describe the 30 instances

used in our test, including, the optimal cost

(Opt. Cost), the size of the instances n , the

number of variables
ijx and

ijkly , and the

number of constraints (Nb. of Cons.). These

instances can be divided into two groups:

sparse instances (Chr18a-Scr20) and dense

ones (Nug12-Had20). As mentioned in

Section 4, the integer programming (IP)

formulations QAP-I and QAP-II were applied

to the dense instances and sparse ones,

respectively. In Table 1, we also report the

density of the flow matrix () ijF f (DFM), the

proportion of non-zero elements except the

diagonal ones in the flow matrix F , which is

defined by using the following formula:

2

the number of the nonzero elements
100

n
DFM

n n

.

In Table 2 we report the results obtained

with Cplex 12.5 with default settings and

14400 seconds of CPU time limit. Column

Cost reports the best objective function value

computed by Cplex which is also an upper

bound of the optimal cost. Column

.Opt gap reports its optimal gap, .Opt gap

Cost-Opt.Cost
100%

Opt.Cost

, which provides a relative

measure of proximity of the objective function

value to the optimal value. Columns LP Cost

and LB gap report the linear programming

(LP) relaxation value (lower bound) and the

related gap between the lower bound and the

optimal cost, Opt.Cost-LPCost
 100

Opt.Cost
LB gap ,

respectively. The corresponding CPU time (in

seconds) for solving the QAP-I, QAP-II and

their LP relaxation is presented in columns IP

(sec.) and LP (sec.), respectively.

Within the allowed time limit, 12 of the

30 instances were solved to optimality by

plain Cplex, which are indicated by “0”

optimality gap. The other 18 instances which

were not proved their optimality are marked

with (*). Note that, although Cplex computed

the optimal costs for instances Nug12, Nug15

and Had14, they were not proved optimally

(namely, Cplex did not exit optimally) and are

also marked with (*). We observe that Cplex

solved the LP relaxation for all of the cases in

a few seconds. However, as expected, the

bounds given by the LP relaxation of

formulations QAP-I and QAP-II are weaker

than the SLR dual bound presented in Table 3.

The LB gap is greater than 10% for most of

the cases, even equal to 100% for the cases

Esc32a-Esc32h and Nug12-Nug18.

In Table 3 we report the results obtained

with the SLR solution procedure based on the

dual ascent method, Algorithm 1. Columns

LB, LB gap , UB and .Opt gap report the

dual lower bound, the lower bound gap (in %),

the upper bound and the optimality gap (in %),

respectively. If Algorithm 1 converged or

gave a reasonable lower bound within 14400

seconds, then we report the convergent/

reasonable lower bound. For example,

Algorithm1 took a total CPU time of 2.03

seconds to solve Chr18a and obtained the

optimal lower/upper bound 11098, but

Algorithm 1 did not converge and only gave

the reasonable lower bound
1

 636 for the

instance Esc32c. Otherwise, the symbol “-” is

presented instead of the unreasonable bound,

1

As discussed in previous section, the optimal

solution of the oracle problem should be the lower

bound to the QAP, but if the SLR did not solve one

oracle problem optimally within 14400 seconds, the

cost outputed can be greater or less than the optimal

(best known) cost presented in Table 1. We call it as

reasonable bound if the cost outputed is less than the

optimal one, otherwise, we call it as unreasonable

bound.

see cases Esc32a, Esc32b, Esc32d and Esc32h.

Columns T. CPU time, CPU time of last iter.

and Nb. of iters. report the total CPU time, the

CPU time of the last iteration and the number

of iterations, respectively. There are four cases.

Case 1: we report the convergent time if the

algorithm converged within 14400 seconds.

Case 2: the algorithm converged and the total

CPU time after the last finished iteration was

longer than 14400 seconds. For example,

Algorithm 1 took a total CPU time of

18712.82 seconds to perform 3 iterations in

instance Nug12 and converged to an optimal

solution. Case 3: the algorithm did not

converge and the total CPU time after the last

finished iteration was longer than 14400

seconds. For example, Algorithm 1 took

20902.76 seconds to perform 3 complete

iterations in instance Had12 but did not

converge to an optimal solution. Case 4: the

first iteration went beyond 14400 seconds. In

this case the algorithm was stopped before

finishing even the first iteration, we report 1

(unfinished) iteration and 14400 seconds of

CPU time. Note that in Case 3 and 4 we

indicate the non-convergent cases by the

symbol (*) in columns T. CPU time (sec.) and

CPU time of last iter. . We observe that 10 of

the 30 instances were solved to optimality by

Algorithm 1. Note that, the .Opt gap of

instance Scr15 is equal to 0.00%, but instance

Scr15 belongs to case 3 because its lower

bound 50944 is not equal to its optimal upper

bound 51140. Although Algorithm 1

computed the optimal costs for instances

Esc32e and Esc32g, it did not prove its

optimality. Thus, instances Esc32e and

Esc32g are also marked with (*). The other

instances, except Esc32c, Had12 and Had20,

have an .Opt gap greater than the one

obtained by using plain Cplex. These greater

.Opt gaps indicate that Algorithm 1 cannot

always solve the large-scale (or hard) QAP

instances efficiently within the limited CPU

time.

An advantage of Algorithm 1 is that one

can reduce the number of variables, namely,

we can fix many
ijkly variables to “0”. Notice

that the number of unfixed
ijkly variables is

different for each SLR iteration and therefore

we give average figures in percent

corresponding to all the SLR iterations (APY

stands for “Average percentage of unfixed

ijkly variables” in Table 3). Comparing the

CPU time in Table 2 and Table 3, we can

draw a conclusion: the solution time needed

by Cplex to solve the oracle (one iteration of

Algorithm 1) is, in general, shorter than the

Cplex time to solve the original QAP. This is

not surprising since the oracle has a reduced

number of variables. However this is not

always the case. For example, Cplex took 4.51

and 34.21 seconds to solve the instances

Esc32e and Esc32g optimally, however,

Algorithm 1 did not optimally solve one

oracle problem (reduced problem) for these

two instances within 14400 seconds.

Table1. Instances description

2
 In this paper, P.ave. is the abbreviation for partial average.

3 G.ave. is the abbreviation for global average.

Ins. Opt. Cost n (%)DFM Nb. of x Nb. of y Nb. of Cons.

Chr18a 11098 18 11.11 324 5202 648

Chr18b 1534 18 11.11 324 5202 648

Chr20a 2192 20 10.00 400 7220 800

Chr20b 2298 20 10.00 400 7220 800

Chr20c 14142 20 10.00 400 7220 800

Chr22a 6156 22 9.09 484 9702 968

Chr22b 6194 22 9.09 484 9702 968

Chr25a 3796 25 8.00 625 14400 1250

P.ave.2 5926.25 20.63 9.80 430.13 8233.50 860.25

Esc32a 130 32 14.92 1024 73408 4800

Esc32b 168 32 21.77 1024 107136 6976

Esc32c 642 32 26.41 1024 129952 8448

Esc32d 200 32 18.15 1024 89280 5824

Esc32e 2 32 1.21 1024 5952 448

Esc32g 6 32 1.81 1024 8928 640

Esc32h 438 32 28.43 1024 139872 9088

P.ave. 226.57 32.00 16.10 1024.00 79218.29 5174.86

Scr12 31410 12 42.42 144 3696 696

Scr15 51140 15 40.00 225 8820 1290

Scr20 110030 20 32.63 400 23560 2520

P.ave. 64193.33 15.67 38.35 256.33 12025.33 1502.00

Nug12 578 12 100.00 144 8712 1608

Nug14 1014 14 100.00 196 16562 2576

Nug15 1150 15 100.00 225 22050 3180

Nug16a 1610 16 100.00 256 28800 3872

Nug16b 1240 16 100.00 256 28800 3872

Nug17 1732 17 100.00 289 36992 4658

Nug18 1930 18 100.00 324 46818 5544

P.ave. 1322.00 15.43 100.00 241.43 26962.00 3615.71

Had12 1652 12 100.00 144 8712 1608

Had14 2724 14 100.00 196 16562 2576

Had16 3720 16 100.00 256 28800 3872

Had18 5358 18 100.00 324 46818 5544

Had20 6922 20 100.00 400 72200 7640

P.ave. 4075.20 16.00 100.00 264.00 34618.40 4248.00

G.ave.3 9040.20 20.80 50.21 479.60 33943.27 3138.73

Table2. Cplex performance

Ins. Cost
.Opt gap

(%)
LP Cost

 LB gap

(%)

Cplex time

LP(sec.) IP(sec.)

Chr18a 11098 0.00 9515.31 14.26 0.06 1.22

Chr18b 1534 0.00 1534.00 0.00 0.02 0.53

Chr20a 2192 0.00 2156.00 1.64 0.06 1.08

Chr20b 2298 0.00 2242.92 2.40 0.05 2.18

Chr20c 14142 0.00 8816.59 37.66 0.06 67.96

Chr22a 6156 0.00 5993.60 2.64 0.09 1.78

Chr22b 6194 0.00 6099.02 1.53 0.08 1.76

Chr25a 3796 0.00 3272.01 13.80 0.13 49.28

P.ave. 5926.25 0.00 4953.68 9.24 0.07 15.72

Esc32a 194 49.23 0.00 100.00 0.91 14400(*)

Esc32b 244 45.24 0.00 100.00 3.29 14400(*)

Esc32c 716 11.53 0.00 100.00 8.16 14400(*)

Esc32d 232 16.00 0.00 100.00 2.54 14400(*)

Esc32e 2 0.00 0.00 100.00 0.03 4.51

Esc32g 6 0.00 0.00 100.00 0.05 34.21

Esc32h 492 12.33 0.00 100.00 8.41 14400(*)

P.ave. 269.43 19.19 0.00 100.00 3.34 10293.76

Scr12 31410 0.00 25474.00 18.90 0.05 32.78

Scr15 51140 0.00 40026.00 21.73 0.11 2816.24

Scr20 113126 2.81 75420.00 31.46 0.52 14400(*)

P.ave. 65225.33 0.94 46973.33 24.03 0.22 5750.03

Nug12 578 0.00 0.00 100.00 0.27 14400(*)

Nug14 1060 4.54 0.00 100.00 0.80 14400(*)

Nug15 1150 0.00 0.00 100.00 0.78 14400(*)

Nug16a 1722 6.96 0.00 100.00 1.19 14400(*)

Nug16b 1318 6.29 0.00 100.00 0.98 14400(*)

Nug17 1886 8.89 0.00 100.00 1.87 14400(*)

Nug18 2174 12.64 0.00 100.00 2.39 14400(*)

P.ave. 1412.57 5.62 0.00 100.00 1.18 14400.00(*)

Had12 1654 0.12 894.00 45.88 0.27 14400(*)

Had14 2724 0.00 1300.50 52.26 0.87 14400(*)

Had16 3784 1.72 1530.78 58.85 1.44 14400(*)

Had18 5474 2.16 2144.88 59.97 4.15 14400(*)

Had20 7266 4.97 2827.08 59.16 9.58 14400(*)

P.ave. 4180.40 1.80 1739.45 55.22 3.26 14400(*)

G.ave 9192.07 6.18 6308.22 60.74 1.64 8741.94

Table3. The performance of the SLR solving procedure

6 Conclusion
In this paper the Semi-Lagrangian relaxation

(SLR) was implemented to solve the quadratic

Ins. UB
.Opt gap

(%)
LB

(%)

LB gap
APY(%)

T.CPU time

(sec.)

Nb. of

iters.

CPU time of

last iter. (sec.)

Chr18a 11098 0.00 11098 0.00 33.28 2.03 2 0.81

Chr18b 1534 0.00 1534 0.00 21.39 0.76 1 0.76

Chr20a 2192 0.00 2192 0.00 22.32 1.67 1 1.67

Chr20b 2298 0.00 2298 0.00 22.32 2.25 1 2.25

Chr20c 14142 0.00 14142 0.00 24.69 58.95 1 58.95

Chr22a 6156 0.00 6156 0.00 24.33 2.03 1 2.03

Chr22b 6194 0.00 6194 0.00 24.33 3.11 1 3.11

Chr25a 3796 0.00 3796 0.00 22.53 21.46 1 21.46

P.ave. 5926.25 0.00 5926.25 0.00 24.40 11.53 1.13 11.38

Esc32a 204 56.92 - - 24.55 14400(*) 1 14400(*)

Esc32b 260 54.76 - - 24.44 14400(*) 1 14400(*)

Esc32c 690 7.48 636 0.93 24.40 14400(*) 1 14400(*)

Esc32d 256 28.00 - - 24.49 14400(*) 1 14400(*)

Esc32e 2 0.00 2 0.00 27.98 14400(*) 1 14400(*)

Esc32g 6 0.00 6 0.00 26.85 14400(*) 1 14400(*)

Esc32h 524 19.63 - - 24.38 14400(*) 1 14400(*)

P.ave. 277.43 23.83 - - 25.30 14400(*) 1.00 14400(*)

Scr12 31410 0.00 31410 0.00 35.56 66.74 2 44.61

Scr15 51140 0.00 50944 0.38 30.47 14551.9(*) 5 3465.56

Scr20 116272 5.67 107170 2.60 17.91 14400(*) 1 14400(*)

P.ave. 66274.00 1.89 62810.67 0.99 27.98 9673.90 2.67 5067.57

Nug12 578 0.00 578 0.00 49.10 18712.82 3 7039.89

Nug14 1210 19.33 554 45.36 20.13 14400(*) 1 14400(*)

Nug15 1354 17.74 476 58.61 17.00 14400(*) 1 14400(*)

Nug16a 1822 13.17 948 41.12 21.09 14400(*) 1 14400(*)

Nug16b 1554 25.32 552 55.48 19.23 14400(*) 1 14400(*)

Nug17 2154 24.36 754 56.47 17.53 14400(*) 1 14400(*)

Nug18 2422 25.49 942 51.19 19.65 14400(*) 1 14400(*)

P.ave. 1584.86 17.92 686.29 44.03 23.39 15083.74 1.29 13415.46

Had12 1654 0.12 1602 3.03 43.22 20902.76 3 7438.45

Had14 2824 3.67 2414 11.38 17.96 14400(*) 1 14400(*)

Had16 3786 1.77 3256 12.47 19.03 14400(*) 1 14400(*)

Had18 5880 9.74 4860 9.29 19.65 14400(*) 1 14400(*)

Had20 7202 4.05 6174 10.81 19.90 14400(*) 1 14400(*)

P.ave. 4269.20 3.87 3661.20 9.40 23.95 15741.21 1.40 12930.07

G.ave. 9353.80 10.57 - - 24.66 10473.71 1.33 9155.25

assignment problem (QAP) for the first time.

A dual ascent algorithm with finite

convergence, intended to solve the QAP, was

proposed based on the theoretical properties of

the SLR and the QAP.

The results presented in this paper show

that Cplex outperformed the proposed

approach in most of the instances in terms of

solution quality and CPU time. However, this

paper shows some contributions. First

contribution: in Table 3 we observe that the

average percentage of unfixed variables

ijkly (APY) is around 25%. Roughly speaking,

this implies that one should be able to solve

the QAP by eliminating around 75% of its

variables by using the SLR method. Thus, the

CPU time spent by Cplex in solving the

reduced oracle problem (one iteration of

Algorithm 1) is in general shorter than the one

spent by Cplex in solving the original QAP as

one would expect. However, we have

observed in a few cases that to solve the oracle

problem, generated via fixing some variables

in advance, may take longer than to solve the

original QAP. Second contribution: comparing

the lower bounds reported in Tables 2 and 3

under labels LP Cost and LB, respectively, we

observe that the reported SLR lower bounds

are much stronger than the LP bounds as

expected (under convergence the SLR lower

bound closes the duality gap).

Therefore, it is possible that these two

contributions were useful for future SLR

approaches to solve the QAP problem. Finally,

some aspects in the SLR approach here

presented deserve further research in order to

analyze possible improvements. For example,

it is possible to improve the computational

efficiency of the Algorithm 1 by choosing

better initial dual point and efficiently

updating it.

References

[1] S. Sahni, T. Gonzalez. P-complete

approximation problems. Journal of the

Association of Computing Machinery, 1976,

23(3):555–565.

[2] L. Steinberg. The backboard wiring

problem: A placement algorithm. Siam

Reviews, 1961, 3(1):37–50.

[3] M. A. Pollatschek, N. Gershoni, Y. T.

Radday. Optimization of the typewriter

keyboard by simulation. Angewandte

Informatik, 1976, 17(0):438–439.

[4] A. M. Geoffrion, G. W. Graves. Scheduling

parallel production lines with changeover

costs: Practical applications of a quadratic

assignment/lp approach. Operations

Research, 1976, 24(4):595–610.

[5] M. J. Brusco, S. Stahl. Using quadratic

assignment methods to generate initial

permutations for leastsquares

unidimensional scaling of symmetric

proximity matrices. Journal of

Classification, 2000, 17(2):197–223.

[6] R. E. Burkard. Quadratic assignment

problem. Handbook of Combinatorial

Optimization, New York: Springer, 2013,

2741–2814.

[7] H.-Z. Zhang, L. Ma, C. Beltran-Royo. The

Quadratic Assignment Problem & Its

Linearization Techniques (in Chinese).

Shanghai: Shanghai People’s Publishing

House, 2013.

[8] E. L. Lawler. The quadratic assignment

problem. Management Science, 1963,

9(4):586–599.

[9] T. C. Koopmans, M. J. Beckmann.

Assignment problems and the location of

economic activities. Econometrica, 1957,

25(1):53–76.

[10] M. Jünger, V. Kaibel. The QAP-polytope

and the star transformation. Discrete

Applied Mathematics, 2001,

111(3):283–306.

[11] M.W. Padberg, M. P. Rijal. Location,

Scheduling, Design and Integer

Programming. Boston: Kluwer Academic

Publishers, 1996.

[12] M. Jünger, V. Kaibel. On the SQAP-

Polytop. Siam Journal on Optimization,

2000, 11 (2):444–463.

[13] W. P. Adams, M. Guignard, P. M. Hahn, et

al. A level-2 reformulation-linearization

technique bound for the quadratic

assignment problem. European Journal of

Operational Research, 2007,

180(3):983–996.

[14] W. P. Adams, T. A. Johnson. Improved

linear programming-based lower bounds

for the quadratic assignment problem.

DIMACS Series in Discrete Mathematics

and Theoretical Computer Science,

American Mathematical Society, 1994,

16:43–75.

[15] B. Rostami, F. Malucelli. A revised

reformulation-linearization technique for

the quadratic assignment problem. Discrete

Optimization, 2014, 14:97–103.

[16] Y. Xia. Gilmore-lawler bound of quadratic

assignment problem. Frontiers of

Mathematics in China, 2008, 3(1):109–118.

[17] Y. Xia, W. Gharibi. On improving convex

quadratic programming relaxation for the

quadratic assignment problem. Journal of

Combinatorial Optimization, 2015,

30(3):647–667.

[18] R. Sotirov E. de Klerk. Improved

semidefinite programming bounds for

quadratic assignment problems with

suitable symmetry. Mathematical

Programming, 2012, 133(1-2):75–91.

[19] Q. Zhao, S. E. Karisch, F. Rendl, et al.

Semidefinite programming relaxations for

the quadratic assignment problem. Journal

of Combinatorial Optimization, 1998,

2(1):71–109.

[20] M. S. Hussin, T. Stutzle. Tabu search vs.

simulated annealing as a function of the

size of quadratic assignment problem

instances. Computers & Operations

Research, 2014, 43(1):286–291.

[21] A. Misevicius. An implementation of the

iterated tabu search algorithm for the

quadratic assignment problem. OR

Spectrum, 2012, 34(3):665–690.

[22] E. Duman, M. Uysal, A. F. Alkaya.

Migrating birds optimization: A new

metaheuristic approach and its performance

on quadratic assignment problem.

Information Sciences, 2012, 217(1):65–77.

[23] C.W. Commander. A survey of the

quadratic assignment problem, with

applications. Morehead Electronic Journal

of Applicable Mathematics, 2005, 4:1–15.

[24] E. M. Loiola, N. M. M. Abreu, P. O.

Boaventura-Netto, et al. A survey for the

quadratic assignment problem. European

Journal of Operational Research, 2007,

176(2):657–690.

[25] E. Cela. The Quadratic Assignment

Problem: Theory and Algorithms. Kluwer

Academic Publishers, London, 1998.

[26] M. Guignard. Lagrangean relaxation. Top,

2003, 11(2):151–228.

[27] I. Z. Milis, V. F. Magirou. A lagrangian

relaxation algorithm for sparse quadratic

assignment problems. Operations Research

Letters, 1995, 17(2):69–76.

[28] A. A. Pessoa, P. M. Hahn, M. Guignard, et

al. Algorithms for the generalized quadratic

assignment problem combining lagrangean

decomposition and the

reformulation-linearization technique.

European Journal of Operational Research,

2010, 206(1):54–63.

[29] C. Beltran, C. Tadonki, J.-Ph. Vial. Solving

the p-median problem with a

semi-Lagrangian relaxation. Computational

Optimization and Applications, 2006,

35(2):239–260.

[30] C. Beltran-Royo, J.-P. Vial, A.

Alonso-Ayuso. Semi-lagrangian relaxation

applied to the uncapacitated facility

location problem. Computational

Optimization and Applications, 2012,

51(1):387–409.

[31] H.-Z. Zhang, C. Beltran-Royo, M.

Constantino. Effective formulation

reductions for the quadratic assignment

problem. Computers & Operations

Research, 2010, 37(11):2007–2016.

[32] R. E. Burkard, S. E. Karisch, F. Rendl.

Qaplib-a quadratic assignment problem

library. Journal of Global Optimization,

1997, 10(4):391– 403.

Huizhen Zhang was born in

1979. She received her B.S.

degree from Shanxi

University of Finance and

Economics in 2002, and M.S.

degree from Chengdu

University of Technology in

2005, and Ph.D degree from University of

Shanghai for Science and Technology (USST) in

2009. Now she is an associate professor of

USST. Her research interests include operations

research and intelligent optimization algorithms.

Email: zhzhzywz@gmail.com,

zhzzywz@163.com

Cesar Beltran-Royo was

born in 1968. He received his

B.S. degree from University

of Valencia in 1991, and

Ph.D. degree from

Polytechnic University of

Catalonia in 2001. Now he is a professor of Rey

Juan Carlos University, Spain. His main research

interests include operations research and

stochastic optimization.

Email: cesar.beltran@urjc.es

Bo Wang was born in 1960.

He received Ph.D. degree from

Beihang University in 2000.

Now he is a professor in the

department of system science at

the University of Shanghai for

Science and Technology. His main research

interests include systems engineering, operations

management, environmental management and

decision analysis.

Email: Toddwang2000@126.com

Liang Ma was born in 1964.

He received his B.S. degree

from Fudan University in 1985,

and Ph.D. degree from

Shanghai Jiao Tong University

in 2000. Now he is a professor

and Ph.D. supervisor in the

department of system science at the University

of Shanghai for Science and Technology. His

main research interests include systems

engineering, operations research and intelligent

optimization.

Email: maliang@usst.edu.cn

Ziying Zhang was born in

1978. He received his B.S.

degree from Hubei

Engineering University, and

M.S. degree from Zhengzhou

University in 2007, and the

Ph.D. degree from Fudan University in 2013.

Now he is working at Shanghai University of

Engineering Science as an associate professor.

His main research interests include

computational simulation of structure and

physical properties of crystal material.

Email: yingzz25@126.com

mailto:zhzhzywz@gmail.com
mailto:zhzzywz@163.com
mailto:cesar.beltran@urjc.es
mailto:Toddwang2000@126.com
mailto:maliang@usst.edu.cn

