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Abstract: The Semi-Lagrangian relaxation (SLR), a 

new exact method for combinatorial optimization 

problems with equality constraints, is applied to the 

quadratic assignment problem (QAP). A dual ascent 

algorithm with finite convergence is developed for 

solving the Semi-Lagrangian dual problem associated 

to the QAP. We have performed computational 

experiments on 30 moderately difficult QAP instances 

by using the mixed integer programming solvers, 

Cplex, and SLR+Cplex, respectively. The numerical 

results not only further illustrate that the SLR and the 

developed dual ascent algorithm can be used to solve 

the QAP reasonably, but also disclose an interesting 

fact: comparing with solving the unreduced problem, 

the reduced oracle problem cannot be always 

effectively solved by using Cplex in terms of the CPU 

time. 

Keywords: Quadratic assignment problem 

(QAP), Semi-Lagrangian relaxation (SLR), 

Lagrangian relaxation, Dual ascent algorithm 

1 Introduction 

The quadratic assignment problem (QAP) is 

one of the most well-known and difficult 

NP-hard combinatorial optimization problems. 

Even finding an  -approximate solution is 

difficult [1]. It can be applied in several fields 

such as backboard wiring [2], typewriter 

keyboards and control panels design [3], 

scheduling [4], numerical analysis [5], etc. 

Moreover, many well-known classical 

combinatorial optimization problems such as 

the traveling salesman problem, the graph 

partitioning problem and the maximum clique 

problem, can be reformulated as special cases 

of the QAP, see [6] and [7] for more details. 

    In general, the QAP can be described as a 

one-to-one assignment problem of n facilities 

to n locations, which minimizes the sum of the 

total quadratic interaction cost, the flow 

between the facilities multiplied by their 

distances, and the total linear cost associated 

with allocating a facility to a certain location. 
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Consider the set N={1,2,…,n}and three n n  

matrices F=(
ijf ), D=(

ijd ) and C=(
ijc ). The 

QAP with coefficient matrices F, D and C can 

be stated as follows: 

1 1 1 1 1 1

min
n n n n n n

ik jl ij kl ij ij

i j k l i j

f d x x c x

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x X
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  0,1 ,      , N ijx i j .     (4) 

ikf denotes the amount of flow between 

facilities i and k, 
jld denotes the distance 

between locations j and l, and 
ijc  denotes the 

cost of locating facility i at location j. 
ijx =1if 

facility i is assigned to location j, otherwise, 

ijx =0. 

    In [8] a more general expression of (1) 

was introduced by using a four-dimensional 

array
ijklq instead of the flow-distance 

products
ik jlf d : 

1 1 1 1 1 1

min
n n n n n n

ijkl ij kl ij ij
x X

i j k l i j

q x x c x


     

  .   (5) 

    The QAP has drawn the researcher’s 

attention worldwide and extensive research 

has been done since it was proposed by 

Koopmans and Beckmann in 1957 [9]. For 

example, a complete study of valid 

inequalities, facets and lifting theorems can be 

found in [10, 11, 12], several linearizations of 

the objective function (1) are achieved by 

defining new variables and introducing new 

linear (and binary) constraints [13, 14, 15], 

and a number of bounding techniques, such as 

Gilmore-Lawler type bounds [16], convex 

quadratic programming bound [17], bounds 

based on dual approach and bounds based on 

semidefinite programming relaxation [18, 19], 

have also been developed. Another example is 

solution techniques, some of the most 

challenging QAP instances have been solved 

by exact methods and heuristic algorithms like 

simulated annealing [20], Tabu search [20, 21], 

migrating birds optimization algorithm [22], 

and so on. The readers can also refer to the 

review papers [23, 24] and books/book 

chapters [6, 7, 11, 25] for details of 

applications, theory and algorithms of the 

QAP. 

    Lagrangian relaxation is one of the most 

popular bounding techniques in combinatorial 

optimization [26] and it has also been used to 

solve the QAP by combining with branch and 

bound [27, 28]. Semi-Lagrangian relaxation 

(SLR), a new type of Lagrangian relaxation 

with zero duality gap, has been proposed in 

recent years and has allowed to solve 

large-scale combinatorial optimization 

problems with equality constraints by means 

of general purpose mixed integer 

programming solvers [29, 30]. However, as 

far as we know, the SLR applied to the QAP 

has not been reported in literature. In this 

paper, we will investigate whether the SLR 

can be applied to effectively solve the QAP: 



Are the corresponding subproblems tractable? 

Can they be solved by standard mixed integer 

programming solvers as for example Cplex? 

    In order to implement the SLR to solve 

the QAP, the starting point is the reduced 

linearizations of the QAP proposed in [31], 

named QAP-I and QAP-II. These 

formulations have a reduced number of 

constraints and therefore seem well suited for 

the SLR in order to consider a reduced 

number of Lagrangian multipliers (dual 

variables). Furthermore, a dual ascent 

algorithm is proposed to solve the 

corresponding SLR dual problem. Finally, to 

investigate the effectivity of the SLR on 

solving the QAP, we use it to solve a set of 30 

instances from the QAP library QAPLIB [32], 

which range from 12 to 32 facilities/locations. 

    This paper is organized as follows: In 

Section 2 we briefly review the main 

properties of the SLR. In Section 3 we 

introduce QAP-I and QAP-II, two reduced 

linearizations of the QAP. In Section 4, the 

SLR is applied to formulations QAP-I and 

QAP-II, and a dual ascent algorithm is 

proposed for solving the corresponding SLR 

dual problems. In Section 5, we report the 

results of the computational experiment 

intended to compare the plain use of Cplex 

versus the combined use of Cplex and SLR. 

Finally, in Section 6 we conclude. 

2 Semi-Lagrangian relaxation 

The concept of SLR was introduced in [29] 

and applied to the uncapacitated facility 

location problem in [30]. In this section, we 

summarize the main results of these two 

papers in Theorem 1. Consider the following 

problem, to be named “primal” henceforth: 

* min   T
x

z c x ,               (6a) 

s.t.    Ax b ,               (6b) 

       P N
n

x X ,       (6c) 

where  R R
m n

A , the components of mRb and 

R
n

c are nonnegative. P is a polyhedral set, 

0X and problem (6) is feasible. 

    The SLR consists in substituting the 

constraint Ax b  by the equivalent pair of 

constraints Ax b  and Ax b , and then 

relaxing Ax b  only. Thus we obtain the 

SLR dual problem: 

max ( )


*L SLR
u U

L u ,            (7) 

where u is the SLR multiplier vector (dual 

variables), 
 RmU and ( )SLRL u  is the SLR 

dual function defined as 

( ) min  ( )  T T

SLR
x

L u c x u b Ax , (8a) 

          s.t.  Ax b ,         (8b) 

               x X ,          (8c) 

Note that to calculate ( )SLRL u  we have 

to solve problem (8), which we call the oracle 

at u. Also note that with our assumptions its 

feasible region is bounded. We also have that 

0x is feasible, hence problem (8) has an 

optimal solution. ( )SLRL u  is well-defined, 

but the minimizer in (8) is not necessarily 

unique. With some abuse of notation, we write 

( ) arg min{ ( )

,  },

  

 

T T

x
x u c x u b Ax

Ax b x X

  (9) 



to denote one such minimizer. 

We denote X
*
, U

*
and X(u) the set of 

optimal solutions of problems (6), (7) and (8), 

respectively. We say that (x
*
, u

*
) is an optimal 

primal-dual point if u
* int(U

*
) and x

*X(u
*
)

∩X
*
. Given two sets 

1G and
2G , their addition 

corresponds to
1 2 1 2 1 1{ :  and   G G g g g G  

2 2 }g G . For any set G, int( )G stands for its 

interior. 

Theorem 1 [29, 30] The following 

statements hold. 

1. ( )SLRL u  is concave and b-Ax(u) is a 

subgradient at u. 

2. ( )SLRL u  is monotone and ( ) SLRL u  

( )SLRL u  if  u u , with strict inequality if 

 u u  and *u U . 

3. * *

 R
m

U U ; thus U
* 

is an unbounded 

(convex) set. 

4. If x(u) is such that Ax(u)=b, then 

*u U and *( )x u X . 

5. Conversely, if *int( )u U , then 

any *( )x u X . 

6. The SLR closes the duality gap for 

problem (6), that is, 
* *z L . 

3 Reduced QAP linearizations 

Here we briefly review the reduced QAP 

linearizations proposed in [31], QAP-I and 

QAP-II which are derived by eliminating 

constraints and variables of the Adams and 

Johnson linearization [14], respectively. First, 

the following formulation QAP-I is proposed 

in [31] by eliminating the symmetry 

constraints of the Adams and Johnson 

linearization. 

QAP-I:  

,
1 1 1 1

min   
n n

ijkl ijkl ij ij

i k n j l n i j

q y p x
       

  
x y

,   (10) 

s.t.    
1,

,

, , , ,

n

ijkl ij

l l j

y x

i j k i k

 



 



N

         (11) 

1,

,

, , , ,

n

ijkl kl

j j l

y x

i k l i k

 



 



N

        (12) 

   
 0 , 1 ,

, , , ,  ,  ,

i j k ly

i j k l i k l j



  N
   (13) 

x X ,            (14) 

where
ijkl ijkl klijq q q  and 

ij ij ijijp c q  . 

Second, formulation QAP-II is further 

presented in [31] by eliminating variables in 

the case of a sparse cost matrix. 

QAP-II: 

 

0

,
1 1 1 1

min   
n n

ijkl ijkl ij ij

i k n j l n i j
ik

q y p x
       


  
x y

F

,   (15) 

s.t.   
1,

0

,

, , , , ,

n

ijkl ij

l l j

y x

i j k i k ik

 



  



N F

    (16) 

1,

0

,

, , , , ,

n

ijkl kl

j j l

y x

i k l i k ik

 



  



N F

     (17) 

   
 

0

0 , 1 ,

, , , , ,

, ,

ijkly

i j k l i k

l j ik



 

 

N

F

      (18) 

x X ,         (19) 

where 
0F  is the index set of zero flows, i.e., 

 0 ( , ) 0iki k f   F N N . 

The following result will be used in 



Section 4 to derive a dual ascent algorithm 

intended to solve these two formulations. 

Theorem 2 [31] If * *( , )x y is an optimal 

solution of QAP-I (or QAP-II), then 
*

ijkly   

* *

ij klx x  ( , , , ,i j k lN  ,  )i k l j  . 

As shown in [31], formulations QAP-I 

and QAP-II have a reduced number of 

constraints and therefore seem well suited for 

the SLR in order to consider a reduced 

number of Lagrangian multipliers (dual 

variables). 

4 Semi-Lagrangian relaxation of 

the QAP linearization 

Before applying the SLR method we stress the 

following facts: 

 Formulations QAP-I and QAP-II are 

simpler compared with other QAP 

linearizations, such as Adams and 

Johnson linearization, Frieze and 

Yadegar linearization, Padberg and Rijal 

linearization [6, 25, 11]. 

 The number of ijkly variables is 4( )n . 

Hopefully many of these variables can be 

fixed to “0” in the SLR framework. 

 It is unnecessary to fix variables
ijx , 

since the number of these variables 

is 2( )n . 

 If 0 F in QAP-II, then QAP-II is 

equivalent to QAP-I. Thus, in this section 

we only present the implementation of 

the SLR to solve QAP-I and the related 

theoretical results. Formulation QAP-II 

can be solved in a similar way by the 

SLR method. 

4.1 Semi-Lagrangian dual problem 

Following the ideas of the preceding Section 2, 

we apply the Semi-Lagrangian relaxation to 

QAP-I and obtain the SLR dual problem: 

max  ( )
SLR

u
L u ,              (20) 

with the oracle (dual function) 

,
( ) : min  ( , , )

SLR
x y

L u L u x y ,        (21) 

s.t.     x X ,             (22) 

1,

,

, ,

n

ijkl ij

l l j

y x

i j k ,i < k,

 







N

           (23) 

1,

,

, ,

n

ijkl kl

j j l

y x

i k l ,i < k,

 







N

           (24) 

    0 , 1 ,

, , ,

i j k ly

i j k l , i < k , j l ,



 N

     (25) 

where 

1 1 1, 1, 1 1

1 1 1, 1,

1 1 1, 1,

1 1 1,

( , , )

( )

(

n n n n n n

ijkl ijkl ij ij

i j k k i l l j i j

n n n n

ijk ij ijkl

i j k k i l l j

n n n n

ijkl ijk ijkl

i j k k i l l j

n n n

ijk ij ij

i j k k i

q y p x

u x y

q u y

u p x

q

       

     

     

   

  

 
 

 

 

 
  

 



   

  

  

 

L u x y

1 1 1, 1, 1 1

)
n n n n n n

ijkl ijkl ij ij

i j k k i l l j i j

u y u x
       

   

with ( ) :ijkl ijkl ijkq q u u and 
1,

:
n

ij ijk ijk k i
u u p

 
  . 

The oracle problem ( )SLRL u contains the 

assignment constraints over x, thus x(u) 

computed by solving (21)-(25) is a feasible 

solution for (5) and can be used to calculate an 



upper bound. 

From (21)-(25), it is easy to show that 

there exist optimal solutions (x(u),y(u)) of the 

SLR oracle ( )SLRL u such that ( ) 0ijkly u if 

( ) 0ijklq u . Therefore, in the oracle ( )SLRL u  

some ( )ijkly u  can be fixed to “0” in advance 

if their ( ) 0ijklq u . This operation, which 

reduces the size of the oracle, is quite common 

in Lagrangian relaxation applied to 

combinatorial optimization. There, using some 

appropriate argument, one fixes some of the 

oracle variables and obtains a reduced-size 

oracle called the core problem. Usually we 

have (much) fewer variables ( )ijkly u  in the 

core problem. Roughly speaking, if the size of 

the core problem is small enough, it will be 

possible to solve it by an Integer Programming 

solver (e.g. Cplex, etc.), and this is the main 

advantage of the core problem. 

To control the number of variables 

( )ijkly u  in the core problem, we introduce the 

sorted costs. For each ( , , )i j k  ( 1 ,i j n  , 

k i ), we sort the costs ijklq lN , and get the 

sorted costs: 

1 2 n

ijk ijk ijkq q q   . 

For a given u and a triple ( , , )i j k   

( 1 i k n   , jN ), if u is such that 

r

ijk ijku q (  1,2, ,r n ), then the triple 

( , ,i j k ) will have at most r-1 related 

variables
ijkly with strictly negative reduced 

cost. 

On the other hand, by applying Theorem 

1, Statement 1, we have that ( )SLRL u is 

concave and vector ( )S u with  

1,

( ) ( ) ( ) ,

1 , , , ,

n

ijk ij ijkl

l l j

s x y

i j k n k i

 

 

  

u u u        (26) 

is a subgradient of ( )SLRL u  at u. 

The following result gives a sufficient 

optimality condition for the SLR dual problem 

(20). 

Theorem 3 *  n
u q u U and  nu q  

*int( )u U . 

Proof: Consider the oracle (21)-(25), and 

assume  nu q . If there exists an optimal 

solution of the oracle such that
1,

( )
n

ijkll l j
y

  u  

( )ijx u ,  ( , , )i j k and k i , then, by Theorem 

1 Statement 4, this solution is optimal for the 

original problem. Assume that we have an 

oracle solution with 
1,

( ) 0 ( ) 1
n

ijkl ijl l j
y x

 
   u u for 

some ( , , )i j k and k i , and let lbe such that 

( ) 1klx  u for the given k . By hypothesis, 

0n

ijkl ijk ijkl ijkq u q q     . Thus, one can set 

( ) ( ) 1ijkl ijy x  u u without increasing the 

objective value. The modified solution is also 

optimal. Hence, there exists an optimal oracle 

solution with
1,

( ) ( )
n

ijkl ijl l j
y x

 
 u u ,  ( , , )i j k  

( k i ) and *u U . Furthermore, according to 

the Statement 3 of Theorem 1, we can show 

that *int( )u U if  nu q . 



■ 

4.2 Solving the QAP Semi-Lagrangian 

dual problem 

Similar with Lagrangian relaxation, it is a 

common approach to develop a dual ascent 

method to solve the combinatorial 

optimization problem when the SLR is 

implemented. However, the SLR solving 

procedure based on dual ascent usually takes a 

number of time consuming iterations for 

large-scale problems. Initializing and updating 

the SLR multiplier vector are the key 

techniques to reduce the number of iterations. 

We now present a specialized version of the 

dual ascent method [30] for formulation 

QAP-I, which involves a pre-processing phase 

of initializing the SLR multiplier vector with a 

near optimal one, and a process of updating 

the multiplier vector based on the Theorem 2. 

4.2.1 Initializing the multiplier vector 

By Theorem 1, Statement 3, we know that the 

set of optimal dual solutions *U is convex and 

unbounded such that * *R m
U U . In Fig.1 we 

have a possible representation of this set. We 

can define the set of non-dominated optimal 

solutions as the Pareto frontier of the optimal 

set U
*
. Fig.1 pictures a possible trajectory of 

multiplier from the origin to the set. It is easy 

to observe that an optimal solution 

( ( ), ( ))x u y u of the oracle (21)-(25) has the 

property that ( ) 0ijkly u if the corresponding 

reduced cost ( )ijkl ijkq u  is nonnegative. At 

the origin O (u=0) of Fig.1, the oracle is easy 

and has the trivial solution ( ) 0y u , but a 

number of time consuming iterations will be 

needed to obtain an optimal primal-dual 

solution * * *(( ( ), ( )), )x u y u u . At point C , far 

inside the optimal set, all reduced costs are 

negative, the oracle is essentially equivalent to 

the original problem QAP-I and is difficult to 

be solved. The difficulty in solving the oracle 

increases as one progresses along the 

pathO -C , that is, as one increases u. A key 

issue is how to initialize the multiplier vector 

u near to the Pareto frontier of U
*
, point A in 

Fig.1, where the oracle problem involves only 

a few variables. At point A the oracle may be 

easy and one may only need to solve a short 

sequence of moderately difficult oracles in 

order to get an optimal primal-dual solution. 

 

Fig.1 Path from the origin multiplier vector O to 

optimal set U* 

Here we initialize the SLR multiplier 

vector by using the formula 

(1 )( 1)1 ,

1 , , , ,

r n

ijk ijku q

i j k n k i

     

  

          (27) 

where 0 1  , (1 )( 1)r n      denotes the 

smallest integer which is larger than r    

(1 )( 1)n  , 0min{ , {1,2, ,r

ijk ijkr r q u r     

1}}n , and 0 1n

ijk ijku q  is the initial guess for 



*

ijku . Obviously, initial multiplier vector 1u is a 

point of the line connecting points rq and 

1 1( ,0 1)n n n

ijk ijkq q       q which is an interior 

point of U
*
.  

4.2.2 Updating the multiplier vector 

Suppose that ( ( ), ( ))t tx u y u is the optimal 

solution of the oracle ( )t

SLRL u . For any given 

triple ( , , )i j k (1 , , ,  )i j k n k i   , if ( )t

ijks u  

1,
( ) ( ) 1

nt t

ij ijkll l j
x y

 
 u u , then there exists 

l N such that ( ) ( ) 1t t

kl ijx x  u u  and ( )t

ijkly u  

0 . Furthermore, we can conclude that 

( )t

ijkly u was fixed to “0” at the tth iteration 

because of ( ) 0t t

ijkl ijkl ijkq q   u u (assume 

that ( ) 0t

ijklq  u , we can define a new feasible 

solution for the oracle ( )t

SLRL u , say ( ( ), ( ))t tx u y u , 

which is equal to ( ( ), ( ))t tx u y u  except for 

component with the given ( , , , )i j k l . For this 

component, we set ( ) 1 
t

ijkly u , and therefore 

( , ( ), ( )) ( , ( ), ( ))t t t t t tL u x u y u L u x u y u , which 

contradicts the fact that ( ( ), ( ))t tx u y u  is the 

optimal solution of the oracle ( )t

SLRL u ). In 

order to make 1 1 1( ) ( ) ( )  

 t t t

ijkl ij kly u x u x u at the 

(t+1)th iteration, the variable 1( )



t

ijkly u should 

not be fixed to “0”. Here we update the SLR 

multiplier 1t

ijk ijklu q 

  ( 0 1  ) for obtaining 

negative 1( )t

ijklq 

u  ( 1 1( )t t

ijkl ijkl ijk ijklq q u q 

     u   

0i j k lq    ). 

To maintain the number of variables as low 

as possible, at each iteration we add at most one 

variable for per triple ( , , )i j k if ( ) ( )t t

ijk ijs xu u  

1,
( ) 0

n t

ijkll l j
y

 
  u , that is, we update t

ijku from 

r

ijkq  to 1 1t r

ijk ijku q    . See the Step 6 of 

Algorithm 1 in section 4.2.3. 

4.2.3 Dual ascent algorithm 

Combining with the idea of subsection 4.2.1 

and 4.2.2, we develop the following 

Algorithm 1 for solving the QAP-I. 

Algorithm 1 

 Input: Data of the QAP-I instance, 

and 0 0u initial guess for an 

optimal point for the SLR dual 

problem (20). 

 Output: * * *( ( ), ( ), )x u y u u optimal 

primal-dual point or * *( ( ), ( ))x u y u  

optimal primal point for the QAP-I 

instance. 

1. Initialization: 

 For each ( , , )i j k ( 1 , ,  i j n k i   ), 

sort the costs  ijklq lN to obtain the 

sorted costs: 

1 2 n

ijk ijk ijkq q q   . 

 For each ( , , )i j k (1 , ,  i j n k i   ), 

set 1n n

ijk ijkq q    for a 0 1  . 

 Set  1,2, , 1n N . 

 Set upper bound UB=inf and the best 

upper bound BestUB=inf. 

 Solve the linear programming (LP) 



relaxation of the QAP-I to obtain the 

optimal objective value (LP Cost), 

and set lower bound LB=LP Cost. 

2. Initial dual point:  

Set 1t  . For each ( , , )i j k , set r   

0min{ ,  }r

ijk ijkr q u r N , and initialize t

ijku  

by using the formula (27). 

3. Oracle call: 

 Variable fixing: For each ( , , , )i j k l , 

fix ( )t

ijkly u to “0” if ( ) 0ijklq u . 

 Solve the core problem (21)-(25) to 

obtain ( )t

SLRL u  as well as ( ( ),tx u  

( ))t
y u . 

 Compute the subgradient ( )t
S u such 

that 

1,

( ) ( ) ( ) ,

1 , , ,  .

n
t t t

ijk ij ijkl

l l j

s x y

i j k n k i

 

 

  

u u u    (28) 

 Update the lower bound 

( )LB
t

SLRL u .        (29) 

4. Heuristic call: Compute UB and 

BestUB. 

1 1 1 1

1 1

( ) ( )

( )

n n n n
t t

ijkl ij kl

i j k l

n n
t

ij ij

i j

q x x

c x

   

 

 



UB u u

u

   (30) 

   m i n ,  B e s t U B U B B e s t U B     (31) 

5.  Stopping criterion: 

If ( ) 0t
S u , stop with an optimal 

primal-dual point * * *( ( ), ( ), ) ( ( ),tx u y u u x u  

( ), )t t
y u u . If LB=BestUB, update ( )t

ijkly u  

( ) ( )t t

ij klx xu u  (1 i k n   ,1 j l n   ) and 

stop with an optimal primal point *( ( ),x u  

*( )) ( ( ), ( )) t ty u x u y u .Otherwise, proceed to 

Step 6. 

6.  Dual point updating: 

For per triple ( , , )i j k , if ( ) 1t

ijks u , find 

l such that ( ) 1 
t

klx u and update 1t

ijk ijklu q

  

 , otherwise update 1 min{t r r

ijk ijk ijku q q    

,  1 1}t

ijku r n     . 

7.  Set 1t t  and return to Step 3.  

 

Theorem 4 Algorithm 1 is a dual ascent 

method and it converges to an optimal dual 

point * *u U ( *  U ) or an optimal primal 

point * *( ( ), ( ))x u y u after finitely many 

iterations. 

Proof: Let ( ( ), ( ))t tx u y u be the optimal 

solution of the oracle ( )t

SLRL u ( t is a finite 

positive integer). We have four exclusive 

cases: 

Case 1 LB BestUB . At least for one 

component of ( )t
S u , say ( , , )i j k    , there exists 

( ) 1   
t

i j ks u and 1t n

i j k i j ku q 

      . In this case, there 

exist ( ) 1t

i jx   u and ( ) 1t

k lx   u  ( k i  , l   

j ), and ( ) 0t

i j k ly     u because t

i j k l i j kq u       . Then 

t

i j ku   
can be updated by the Step 6 of Algorithm 

1, and 1t t

i j k i j k l i j ku q u 

            . 

By Theorem 1, Statement 2, we have 

that 1( ) ( ) t t

SLR SLRL u L u . 



Case 2 LB BestUB . All of the nonzero 

components of ( )tS u have the associated 

multipliers 1t n

ijk ijku q  . We will prove by 

contradiction that this case cannot happen. 

For convenience, we can define T  

1,
{( , , ) ( ) 0 ( ) 1,1 , ,

n t t

ijkl ijl l j
i j k y x i j k

 
     u u  

 and }n k i . In this case, let l be such that 

( ) 1t

klx  u for any ( , , )i j k T , then one can 

modify a solution by setting ( )t

ijkly  u  

( ) ( ) 1t t

ij klx x  u u with decreasing the 

objective value because of t

ijkl ijk ijklq u q     

1 0n

ijkq   , which contradicts ( ( ), ( ))t tx u y u , the 

optimal solution of the oracle ( )t

SLRL u . 

Case 3 =LB BestUB and ( )  0
t

S u . In 

this case, ( )t
x u is the optimal solution for 

formulation (5). At Step 5, ( ( ), ( ))t tx u y u  

updated by using ( ) ( ) ( )t t t

ijkl ij kly x xu u u  (1 i   

k n ,1 j l n   ) is optimal to QAP-I (see 

Theorem 2). 

Case 4 =LB BestUB and ( )  0
t

S u . By 

Theorem 1, Statement 4, we have *tu U .  

■ 

5 Computational experiments 

As we have already stated, the objective of 

this paper is to study whether the SLR can be 

implemented to solve the Quadratic 

Assignment Problem (QAP) effectively, when 

one uses a general purpose mixed integer 

linear programming solver combined with a 

standard PC. To study the performance of the 

SLR solution procedure, a set of instances 

from QAPLIB [32] was solved by combining 

the developed dual ascent method, Algorithm 

1 in the previous Section, with Cplex (default 

settings). 

In our numerical experiments, the CPU 

time limit was set to 14400 seconds. The 

experiments were conducted on a laptop with 

a processor Intel Core Duo 2.80GHz and with 

3.95 GB of RAM. Cplex 12.5 interfaced with 

Matlab R2010a was used to solve the QAP 

instances. On the one hand, we used plain 

Cplex to assess the difficulty of the QAP 

instances and on the other hand, we also used 

Cplex as the integer programming solver to 

compute ( )SLRL u  at each iteration of 

Algorithm 1. For convenience, we set 
0u  

equal to the optimal vector of dual variables 

associated with constraints (11) of the LP 

relaxation of QAP-I (constraints (16) for 

QAP-II) in Algorithm 1. The tuning 

parameters of Algorithm 1,  and were set 

to 0.5. 

In Table 1 we describe the 30 instances 

used in our test, including, the optimal cost 

(Opt. Cost), the size of the instances n , the 

number of variables 
ijx  and

ijkly , and the 

number of constraints (Nb. of Cons.). These 

instances can be divided into two groups: 

sparse instances (Chr18a-Scr20) and dense 

ones (Nug12-Had20). As mentioned in 

Section 4, the integer programming (IP) 



formulations QAP-I and QAP-II were applied 

to the dense instances and sparse ones, 

respectively. In Table 1, we also report the 

density of the flow matrix ( ) ijF f (DFM), the 

proportion of non-zero elements except the 

diagonal ones in the flow matrix F , which is 

defined by using the following formula: 

2

the number of the nonzero elements  
100

n
DFM

n n


 



. 

In Table 2 we report the results obtained 

with Cplex 12.5 with default settings and 

14400 seconds of CPU time limit. Column 

Cost reports the best objective function value 

computed by Cplex which is also an upper 

bound of the optimal cost. Column 

.Opt gap reports its optimal gap, .Opt gap   

Cost-Opt.Cost
100%

Opt.Cost


, which provides a relative 

measure of proximity of the objective function 

value to the optimal value. Columns LP Cost 

and  LB gap  report the linear programming 

(LP) relaxation value (lower bound) and the 

related gap between the lower bound and the 

optimal cost, Opt.Cost-LPCost
 100

Opt.Cost
LB gap   , 

respectively. The corresponding CPU time (in 

seconds) for solving the QAP-I, QAP-II and 

their LP relaxation is presented in columns IP 

(sec.) and LP (sec.), respectively. 

Within the allowed time limit, 12 of the 

30 instances were solved to optimality by 

plain Cplex, which are indicated by “0” 

optimality gap. The other 18 instances which 

were not proved their optimality are marked 

with (*). Note that, although Cplex computed 

the optimal costs for instances Nug12, Nug15 

and Had14, they were not proved optimally 

(namely, Cplex did not exit optimally) and are 

also marked with (*). We observe that Cplex 

solved the LP relaxation for all of the cases in 

a few seconds. However, as expected, the 

bounds given by the LP relaxation of 

formulations QAP-I and QAP-II are weaker 

than the SLR dual bound presented in Table 3. 

The  LB gap is greater than 10% for most of 

the cases, even equal to 100% for the cases 

Esc32a-Esc32h and Nug12-Nug18. 

In Table 3 we report the results obtained 

with the SLR solution procedure based on the 

dual ascent method, Algorithm 1. Columns 

LB,  LB gap , UB and .Opt gap  report the 

dual lower bound, the lower bound gap (in %), 

the upper bound and the optimality gap (in %), 

respectively. If Algorithm 1 converged or 

gave a reasonable lower bound within 14400 

seconds, then we report the convergent/ 

reasonable lower bound. For example, 

Algorithm1 took a total CPU time of 2.03 

seconds to solve Chr18a and obtained the 

optimal lower/upper bound 11098, but 

Algorithm 1 did not converge and only gave 

the reasonable lower bound
1

 636 for the 

instance Esc32c. Otherwise, the symbol “-” is 

presented instead of the unreasonable bound, 

                                                             
1

As discussed in previous section, the optimal 

solution of the oracle problem should be the lower 

bound to the QAP, but if the SLR did not solve one 

oracle problem optimally within 14400 seconds, the 

cost outputed can be greater or less than the optimal 

(best known) cost presented in Table 1. We call it as 

reasonable bound if the cost outputed is less than the 

optimal one, otherwise, we call it as unreasonable 

bound. 



see cases Esc32a, Esc32b, Esc32d and Esc32h. 

Columns T. CPU time, CPU time of last iter. 

and Nb. of iters. report the total CPU time, the 

CPU time of the last iteration and the number 

of iterations, respectively. There are four cases. 

Case 1: we report the convergent time if the 

algorithm converged within 14400 seconds. 

Case 2: the algorithm converged and the total 

CPU time after the last finished iteration was 

longer than 14400 seconds. For example, 

Algorithm 1 took a total CPU time of 

18712.82 seconds to perform 3 iterations in 

instance Nug12 and converged to an optimal 

solution. Case 3: the algorithm did not 

converge and the total CPU time after the last 

finished iteration was longer than 14400 

seconds. For example, Algorithm 1 took 

20902.76 seconds to perform 3 complete 

iterations in instance Had12 but did not 

converge to an optimal solution. Case 4: the 

first iteration went beyond 14400 seconds. In 

this case the algorithm was stopped before 

finishing even the first iteration, we report 1 

(unfinished) iteration and 14400 seconds of 

CPU time. Note that in Case 3 and 4 we 

indicate the non-convergent cases by the 

symbol (*) in columns T. CPU time (sec.) and 

CPU time of last iter. . We observe that 10 of 

the 30 instances were solved to optimality by 

Algorithm 1. Note that, the .Opt gap  of 

instance Scr15 is equal to 0.00%, but instance 

Scr15 belongs to case 3 because its lower 

bound 50944 is not equal to its optimal upper 

bound 51140. Although Algorithm 1 

computed the optimal costs for instances 

Esc32e and Esc32g, it did not prove its 

optimality. Thus, instances Esc32e and 

Esc32g are also marked with (*). The other 

instances, except Esc32c, Had12 and Had20, 

have an .Opt gap  greater than the one 

obtained by using plain Cplex. These greater 

.Opt gaps  indicate that Algorithm 1 cannot 

always solve the large-scale (or hard) QAP 

instances efficiently within the limited CPU 

time. 

An advantage of Algorithm 1 is that one 

can reduce the number of variables, namely, 

we can fix many 
ijkly variables to “0”. Notice 

that the number of unfixed 
ijkly  variables is 

different for each SLR iteration and therefore 

we give average figures in percent 

corresponding to all the SLR iterations (APY 

stands for “Average percentage of unfixed 

ijkly  variables” in Table 3). Comparing the 

CPU time in Table 2 and Table 3, we can 

draw a conclusion: the solution time needed 

by Cplex to solve the oracle (one iteration of 

Algorithm 1) is, in general, shorter than the 

Cplex time to solve the original QAP. This is 

not surprising since the oracle has a reduced 

number of variables. However this is not 

always the case. For example, Cplex took 4.51 

and 34.21 seconds to solve the instances 

Esc32e and Esc32g optimally, however, 

Algorithm 1 did not optimally solve one 

oracle problem (reduced problem) for these 

two instances within 14400 seconds. 



 

 

 

Table1.  Instances description 

                                                             
2
 In this paper, P.ave. is the abbreviation for partial average. 

3 G.ave. is the abbreviation for global average. 

Ins.   Opt. Cost n  (%)DFM  Nb. of x  Nb. of y  Nb. of Cons. 

Chr18a 11098 18 11.11  324 5202 648 

Chr18b 1534 18 11.11  324 5202 648 

Chr20a 2192 20 10.00  400 7220 800 

Chr20b 2298 20 10.00  400 7220 800 

Chr20c 14142 20 10.00  400 7220 800 

Chr22a 6156 22 9.09  484 9702 968 

Chr22b 6194 22 9.09  484 9702 968 

Chr25a 3796 25 8.00  625 14400 1250 

P.ave.2 5926.25  20.63  9.80  430.13  8233.50  860.25  

Esc32a 130 32 14.92  1024 73408 4800 

Esc32b 168 32 21.77  1024 107136 6976 

Esc32c 642 32 26.41  1024 129952 8448 

Esc32d 200 32 18.15  1024 89280 5824 

Esc32e 2 32 1.21  1024 5952 448 

Esc32g 6 32 1.81  1024 8928 640 

Esc32h 438 32 28.43  1024 139872 9088 

P.ave. 226.57  32.00  16.10  1024.00  79218.29  5174.86  

Scr12 31410 12 42.42  144 3696 696 

Scr15 51140 15 40.00  225 8820 1290 

Scr20 110030 20 32.63  400 23560 2520 

P.ave. 64193.33  15.67  38.35  256.33  12025.33  1502.00  

Nug12 578 12 100.00  144 8712 1608 

Nug14 1014 14 100.00  196 16562 2576 

Nug15 1150 15 100.00  225 22050 3180 

Nug16a 1610 16 100.00  256 28800 3872 

Nug16b 1240 16 100.00  256 28800 3872 

Nug17 1732 17 100.00  289 36992 4658 

Nug18 1930 18 100.00  324 46818 5544 

P.ave. 1322.00  15.43  100.00  241.43  26962.00  3615.71  

Had12 1652 12 100.00  144 8712 1608 

Had14 2724 14 100.00  196 16562 2576 

Had16 3720 16 100.00  256 28800 3872 

Had18 5358 18 100.00  324 46818 5544 

Had20 6922 20 100.00  400 72200 7640 

P.ave. 4075.20  16.00  100.00  264.00  34618.40  4248.00  

G.ave.3 9040.20  20.80  50.21  479.60  33943.27  3138.73  



 

Table2.  Cplex performance 

 

 

 

Ins. Cost 
.Opt gap  

(%) 
LP Cost 

 LB gap  

(%) 

Cplex time 

LP(sec.) IP(sec.) 

Chr18a 11098 0.00 9515.31  14.26  0.06  1.22  

Chr18b 1534 0.00 1534.00  0.00  0.02  0.53  

Chr20a 2192 0.00 2156.00  1.64  0.06  1.08  

Chr20b 2298 0.00 2242.92  2.40  0.05  2.18  

Chr20c 14142 0.00 8816.59  37.66  0.06  67.96  

Chr22a 6156 0.00 5993.60  2.64  0.09  1.78  

Chr22b 6194 0.00 6099.02  1.53  0.08  1.76  

Chr25a 3796 0.00 3272.01  13.80  0.13  49.28  

P.ave. 5926.25 0.00 4953.68  9.24  0.07  15.72  

Esc32a 194 49.23 0.00  100.00  0.91  14400(*) 

Esc32b 244 45.24 0.00  100.00  3.29  14400(*) 

Esc32c 716 11.53 0.00  100.00  8.16  14400(*) 

Esc32d 232 16.00 0.00  100.00  2.54  14400(*) 

Esc32e 2 0.00 0.00  100.00  0.03  4.51  

Esc32g 6 0.00 0.00  100.00  0.05  34.21  

Esc32h 492 12.33 0.00  100.00  8.41  14400(*) 

P.ave. 269.43  19.19 0.00  100.00  3.34  10293.76  

Scr12 31410 0.00 25474.00  18.90  0.05  32.78  

Scr15 51140 0.00 40026.00  21.73  0.11  2816.24  

Scr20 113126 2.81 75420.00  31.46  0.52  14400(*) 

P.ave. 65225.33  0.94 46973.33  24.03  0.22  5750.03  

Nug12 578 0.00 0.00  100.00  0.27  14400(*) 

Nug14 1060 4.54 0.00  100.00  0.80  14400(*) 

Nug15 1150 0.00 0.00  100.00  0.78  14400(*) 

Nug16a 1722 6.96 0.00  100.00  1.19  14400(*) 

Nug16b 1318 6.29 0.00  100.00  0.98  14400(*) 

Nug17 1886 8.89 0.00  100.00  1.87  14400(*) 

Nug18 2174 12.64 0.00  100.00  2.39  14400(*) 

P.ave. 1412.57  5.62 0.00  100.00  1.18  14400.00(*) 

Had12 1654 0.12 894.00  45.88  0.27  14400(*) 

Had14 2724 0.00 1300.50  52.26  0.87  14400(*) 

Had16 3784 1.72 1530.78  58.85  1.44  14400(*) 

Had18 5474 2.16 2144.88  59.97  4.15  14400(*) 

Had20 7266 4.97 2827.08  59.16  9.58  14400(*) 

P.ave. 4180.40  1.80 1739.45  55.22  3.26  14400(*) 

G.ave 9192.07  6.18 6308.22  60.74  1.64  8741.94  



 

Table3.  The performance of the SLR solving procedure 

 

6 Conclusion 
In this paper the Semi-Lagrangian relaxation 

(SLR) was implemented to solve the quadratic 

Ins. UB 
.Opt gap  

(%) 
LB 

 

(%)

LB gap  
APY(%) 

T.CPU time 

(sec.) 

Nb. of 

iters. 

CPU time of 

last iter. (sec.) 

Chr18a 11098 0.00  11098 0.00  33.28  2.03  2 0.81  

Chr18b 1534 0.00  1534 0.00  21.39  0.76  1 0.76  

Chr20a 2192 0.00  2192 0.00  22.32  1.67  1 1.67  

Chr20b 2298 0.00  2298 0.00  22.32  2.25  1 2.25  

Chr20c 14142 0.00  14142 0.00  24.69  58.95  1 58.95  

Chr22a 6156 0.00  6156 0.00  24.33  2.03  1 2.03  

Chr22b 6194 0.00  6194 0.00  24.33  3.11  1 3.11  

Chr25a 3796 0.00  3796 0.00  22.53  21.46  1 21.46  

P.ave. 5926.25  0.00  5926.25  0.00  24.40  11.53  1.13  11.38  

Esc32a 204 56.92 - -  24.55  14400(*) 1 14400(*) 

Esc32b 260 54.76 - -  24.44  14400(*) 1 14400(*) 

Esc32c 690 7.48  636 0.93  24.40  14400(*) 1 14400(*) 

Esc32d 256 28.00 - -  24.49  14400(*) 1 14400(*) 

Esc32e 2 0.00  2 0.00  27.98  14400(*) 1 14400(*) 

Esc32g 6 0.00  6 0.00  26.85  14400(*) 1 14400(*) 

Esc32h 524 19.63 - -  24.38  14400(*) 1 14400(*) 

P.ave. 277.43  23.83 - -  25.30  14400(*) 1.00  14400(*) 

Scr12 31410 0.00  31410 0.00  35.56  66.74  2 44.61  

Scr15 51140 0.00  50944 0.38  30.47  14551.9(*) 5 3465.56  

Scr20 116272 5.67  107170 2.60  17.91  14400(*) 1 14400(*) 

P.ave. 66274.00  1.89  62810.67  0.99  27.98  9673.90  2.67  5067.57  

Nug12 578 0.00  578 0.00  49.10  18712.82  3 7039.89  

Nug14 1210 19.33  554 45.36  20.13  14400(*) 1 14400(*) 

Nug15 1354 17.74  476 58.61  17.00  14400(*) 1 14400(*) 

Nug16a 1822 13.17  948 41.12  21.09  14400(*) 1 14400(*) 

Nug16b 1554 25.32  552 55.48  19.23  14400(*) 1 14400(*) 

Nug17 2154 24.36  754 56.47  17.53  14400(*) 1 14400(*) 

Nug18 2422 25.49 942 51.19  19.65  14400(*) 1 14400(*) 

P.ave. 1584.86  17.92  686.29  44.03  23.39  15083.74  1.29  13415.46  

Had12 1654 0.12  1602 3.03  43.22  20902.76  3 7438.45 

Had14 2824 3.67  2414 11.38  17.96  14400(*) 1 14400(*) 

Had16 3786 1.77  3256 12.47  19.03  14400(*) 1 14400(*) 

Had18 5880 9.74  4860 9.29  19.65  14400(*) 1 14400(*) 

Had20 7202 4.05  6174 10.81  19.90  14400(*) 1 14400(*) 

P.ave. 4269.20  3.87  3661.20  9.40  23.95  15741.21  1.40  12930.07  

G.ave. 9353.80  10.57 -  -  24.66  10473.71  1.33  9155.25  



assignment problem (QAP) for the first time. 

A dual ascent algorithm with finite 

convergence, intended to solve the QAP, was 

proposed based on the theoretical properties of 

the SLR and the QAP. 

The results presented in this paper show 

that Cplex outperformed the proposed 

approach in most of the instances in terms of 

solution quality and CPU time. However, this 

paper shows some contributions. First 

contribution: in Table 3 we observe that the 

average percentage of unfixed variables 

ijkly (APY) is around 25%. Roughly speaking, 

this implies that one should be able to solve 

the QAP by eliminating around 75% of its 

variables by using the SLR method. Thus, the 

CPU time spent by Cplex in solving the 

reduced oracle problem (one iteration of 

Algorithm 1) is in general shorter than the one 

spent by Cplex in solving the original QAP as 

one would expect. However, we have 

observed in a few cases that to solve the oracle 

problem, generated via fixing some variables 

in advance, may take longer than to solve the 

original QAP. Second contribution: comparing 

the lower bounds reported in Tables 2 and 3 

under labels LP Cost and LB, respectively, we 

observe that the reported SLR lower bounds 

are much stronger than the LP bounds as 

expected (under convergence the SLR lower 

bound closes the duality gap). 

Therefore, it is possible that these two 

contributions were useful for future SLR 

approaches to solve the QAP problem. Finally, 

some aspects in the SLR approach here 

presented deserve further research in order to 

analyze possible improvements. For example, 

it is possible to improve the computational 

efficiency of the Algorithm 1 by choosing 

better initial dual point and efficiently 

updating it. 
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