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Abstract

The multistage Stochastic Linear Programming (SLP) problem may become numerically in-
tractable for huge instances, in which case one can solve an approximation as for example the
well known multistage Expected Value (EV) problem. We introduce a new approximation to the
SLP problem that we call the multistage Event Linear Programming (ELP) problem. To obtain
this approximation the SLP constraints are aggregated by means of the conditional expectation
operator. Based in this new problem we derive the ELP heuristic that produces a lower and an
upper bound for the SLP problem. We have assessed the validity of the ELP heuristic by solving
large scale instances of the network revenue management problem, where the new approach has
clearly outperformed the EV approach. One limitation of this new approach is that it only consid-
ers randomness on the right-hand side, which is assumed to be discrete and stagewise independent.

Keywords: Multistage stochastic programming, constraint aggregation, conditional expectation,
scenario tree, revenue management.

1 Introduction

The Multistage Continuous Stochastic Linear Programming (MCSLP) problem corresponds to a linear
programming problem with uncertainty in some of its parameters and with several decision stages. For
notational simplicity, considering that all the problems here are multistage, we will drop the M and C
and will use the shorter form SLP instead. The main feature of the SLP problem is that the uncertain
parameters are revealed gradually over time and our decisions should be adapted to this process. The
relevance, applications, properties, approaches and solution methods of this problem can be found in
[4, 17, 32], among others. To address optimization problems under uncertainty one can use different
approaches such as chance constraint optimization [28], robust optimization [24] and scenario based
optimization [4], among others. In this paper we will focus on the last approach.

The SLP problem with a continuous stochastic process is, in general, numerically intractable. To
overcome this difficulty one can approximate the original stochastic process by discretizing it. Of
course, the quality of the approximation will depend on the quality of the discretization [25]. The
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discretization process consists in approximating the original stochastic process by a stochastic process
with a finite support which can be represented by a scenario tree. Thus, the first difficulty in scenario
based optimization corresponds to built a representative and tractable scenario tree. See [9, 15], among
others. Once a representative scenario tree has been built one can write the so called deterministic
equivalent problem which corresponds to a large scale structured linear programming (LP) problem.

The second difficulty corresponds to solve this LP problem. State of the art optimization software
as for example IBM ILOG CPLEX Optimizer [16], or CPLEX for short, can be used to successfully
solving SLP instances of moderate size. However, for many SLP instances one needs to use alternative
methods which can be classified into exact and approximate ones. Exact methods can deal with a
large number of scenarios and are based on Lagrangian relaxation [13], Benders decomposition [14]
and interior point methods [6], among others. The performance of these optimization methods can be
enhanced by using large computing systems (parallel computing, grid computing, etc.) as for example
in [21]. However, if the number of scenarios becomes too large, exact methods are impractical. In
this case, either one solves the SLP problem approximately or one solves an approximation to the
SLP problem. This is the case of schemes such as scenario aggregation [19], scenario sampling [33],
stochastic dynamic programming scenario refinement [5], approximate dynamic programming [27],
and multistage stochastic decomposition [29], among others. However, even an approximated solution
of the SLP problem by the Sample Average Approximation method requires an exponential number of
sampled scenarios in order to attain a reasonable accuracy [31].

In [7] it is presented an iterative procedure, based on constraint aggregation, to fully solve stochastic
programming problems with a convex cost and linear constraints. The idea is to reduce the number
of constraints in the original problem by replacing them by aggregated constraints, which are certain
weights combinations of the original ones. The method generates a sequence of problems with ag-
gregated constraints whose iterates converge to the optimal solution set of the original problem. In
contrast, the heuristic method we present is based on the so called multistage Event Linear Program-
ming (ELP) problem which approximates the SLP one. This approximation is also based on constraint
aggregation, however its objective is not to fully solve the original SLP problem but to compute a
good suboptimal solution and a good cost lower bound. The second difference is that in [7] the main
computations are performed in the space of the original SLP problem whose dimension may be huge,
whereas in the approach we present, the main computations are performed in the space of the ELP
problem whose dimension is drastically smaller than the original one. The third difference is that our
approach uses the probability distribution of the stochastic parameters as the aggregate weights in con-
trast with [7], which uses the level of infeasibility of the current iterate for a given constraint, as the
corresponding aggregate weight.

In this context it is useful to have some cost bound in order to assess the quality of the approximated so-
lution. One of the oldest bounds is the so-called wait-and-see cost lower bound which can be obtained
by solving the SLP problem without satisfying the nonanticipativity constraints [4]. Bounds based
on Jensen’s or on Edmundson-Madansky inequalities can be found in [4]. In [34] Jensen’s bound is
improved by relaxing certain constraints and associating dual multipliers with them. Another type of
bound in stochastic programming is obtained by aggregation of constraints, variables or stages [2, 35].
Such approximations are shown to provide bounds if the randomness appears exclusively either in the
objective or in the right-hand side (rhs). [20] constructs two discrete and stage-aggregated stochas-
tic programs which provide upper and lower bounds on the SLP optimal cost and are numerically
tractable. In the framework of the so-called sample average approximation of the SLP problem, one
can infer statistical bounds for the SLP solution value as in [30].

One of the most popular approximations to the SLP problem is the multistage Expected Value (EV)
problem, which replaces de stochastic parameters of the SLP problem by their expected value. To
derive the EV problem, the scenario tree associated to the SLP problem, is reduced into a degenerate
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scenario tree with one scenario. That is, the EV problem approximates the SLP problem by ignoring
uncertainty. As an alternative to the EV problem, we introduce the multistage Event Linear Program-
ming (ELP) problem, which also approximates the SLP problem but without ignoring uncertainty. The
ELP problem takes into account uncertainty in a simplified way: roughly speaking, it approximates
the multistage scenario tree by a sequence of connected two-stage scenario trees (see Section 4). As
far as we know such approach has never been proposed in literature and it could be useful in the cases
where the SLP problem were numerically intractable.

In this paper we will concentrate on the SLP problem with randomness appearing exclusively in the
rhs of the constraints, which is assumed to be discrete and stagewise independent. In this case, the
bound given by the EV problem, corresponds to Jensen’s bound. We will prove that the ELP problem
also gives a cost lower bound and try to answer the following questions: Is the ELP bound tighter
than the EV one? Is the ELP problem tractable? Is it possible to derive good SLP solutions by
using the ELP solutions? What is the computational performance of the ELP heuristic in the case
of large scale instances? To answer these questions we have used a testbed of large scale instances
of the network revenue management problem (up to 393 millions of variables and 357 millions of
constraints). The average CPLEX time for the EV, ELP and SLP approaches has been 198, 328 and
1995 seconds, respectively (CPLEX has failed to solve 22% of the instances when using the SLP
approach). The average worst case optimality gap for the EV and ELP approaches, has been 3.62%
and 0.45%, respectively.

Thus, the objectives of this paper are to introduce the ELP problem, to study some of its theoretical
properties, to compare it to the EV problem, to analyze the computational effort to solve large scale
ELP instances and to consider a scheme for deriving a (hopefully good) feasible solution for the SLP
problem. With these objectives in mind, in Section 2 we describe the well known SLP problem and
the scenario tree structure. In Section 3 we state the EV problem. In Section 4 we introduce the
ELP problem and the event spike structure. In Section 5 we state and prove the theoretical results
concerning the EV and the ELP bounds. In Section 6 we see an algorithm for obtaining feasible SLP
solutions after solving the EV and ELP problems. Finally, in Section 7 we present the computational
results of comparing the EV, ELP and SLP solution values in a large testbed of instances of the network
revenue management problem, that has been chosen as the pilot case to study the effectiveness of the
ELP approach.

2 The multistage LP problem with a stochastic right-hand side

The following parameters, indexes and index sets, will be used throughout the paper.

t Index for stages, t ∈ T = {1, . . . , T}
k Index for groups of nodes of the scenario tree, k ∈ Kt = {1, . . . ,Kt} ∀ t ∈ T

Two nodes are in the same group k if they have the same ancestor node (see Section 2.1)
l Index for nodes within the same group of nodes, l ∈ Lt = {1, . . . , Lt} (see Section 2.1) ∀ t ∈ T
T + Stands for {2, . . . , T}
T − Stands for {1, . . . , T − 1}
T KtLt Stands for T × Kt × Lt ∀ t ∈ T
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Let us consider the following multistage deterministic LP problem that we name PDLP :

min
x

∑
t∈T

cᵀtxt

s.t. A1x1 = b1
t−1∑
τ=1

Btτxτ +Atxt = bt ∀ t ∈ T +

x ≥ 0,

where ct is the vector of the objective function coefficients, A1 and b1 are the constraint matrix and the
right-hand side (rhs) related to stage t = 1. For all t ∈ T +, Btτ is the constraint matrix of the decision
vector xτ related to stage τ < t, At is the constraint matrix of the decision vector xt and bt is the rhs
corresponding to stage t.

In real life instances, any of the parameters of PDLP may be stochastic. In order to introduce our
new approach, we consider a simpler stochastic version of PDLP where the rhs bt is the only random
vector. A stochastic rhs typically reflects uncertainty in supply and/or demand. This is very often the
case for problems arising in manufacturing, telecommunications, transportation and power generation
[3, 26]. Another important example is the revenue management problem [1, 23] which we have chosen
as a pilot case for our computational experience (see Section 7).

To formulate the stochastic rhs version of problem PDLP , we will replace the set of deterministic
vectors {bt}t∈T by the multivariate stochastic process {ξt}t∈T . On the other hand, the sequential
structure of the problem implies that the decision at stage t must be contingent to the random history
ξ[t] := (ξ1, . . . , ξt). Therefore, decision xt is a function of ξ[t] and we will write xt(ξ[t]). For the
remaining of the paper we make the following assumptions.

Assumption 1 The multivariate stochastic process {ξt}t∈T has the following features:

1. Its first component, i.e., vector ξ1, is deterministic, being b1.

2. Each random vector ξt has a finite support Sξt , for all t ∈ T .

3. It is stagewise independent, that is, the random vectors ξt and ξt′ are independent, for any
t, t′ ∈ T with t 6= t′.

4. It does not depend on the decision sequence {xt}t∈T .

Notice that the previous assumption implies that the support Sξ[t] = Sξ1 × . . .× Sξt is also finite.

The multistage Stochastic Linear Programming (SLP) problem corresponds to the stochastic rhs ver-
sion of PDLP , which can be written as:

min
x

zSLP (x) =
∑
t∈T

E[ cᵀtxt(ξ[t]) ] (1)

s.t. A1xt(ξ[1])] = ξ1 (2)
t−1∑
τ=1

Btτxτ (ξ[τ ]) +Atxt(ξ[t]) = ξt a.s.,∀ t ∈ T + (3)

xt(ξ[t]) ≥ 0 a.s.,∀ t ∈ T (4)
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where ξ1 is a deterministic vector. Notice that it is required that constraints (3) and (4) hold almost
surely (a.s.), which means that they must hold with probability one [4]. Furthermore, xt(ξ[t]), for all
t ∈ T , is called a policy and represents the decision to be taken at stage t as a function of the random
history ξ[t] (see for example [32]).

2.1 The multistage scenario tree

Model (1)-(4) of the SLP problem is handy for theoretical aspects but it is not appropriate for compu-
tational purposes. For this reason, in the next section we introduce the related deterministic equivalent
problem, based on the scenario tree structure, which is the model to be used for computational pur-
poses. In this section we describe the multistage scenario tree structure.

By Assumption 1 each random vector ξt has a finite support Sξt of cardinality, say Lt, such that

Sξt = {ξ̃t1, . . . , ξ̃tLt} ∀ t ∈ T .

Let the probability of each realization ξ̃t be denoted

πtl = P
(
ξt = ξ̃tl

)
∀ tl ∈ T Lt.

Given that {ξt}t∈T has a finite support it can be represented by a multistage scenario tree, where each
node at stage t ∈ T corresponds to a realization ξ̃[t] of the random history ξ[t], and viceversa. If the
stochastic process is stagewise independent, one consequence is that at a given stage t, all the nodes
have the same number of successors (Lt) and the realizations of the rhs at those nodes do not depend
on the realizations at their predecessor nodes. In this case, the total number of scenarios is given by
the product L2L3 · · ·LT . Furthermore, if the number of successors is constant in all the stages, then
we have LT−1 scenarios. In practical applications, in order to have a tractable and representative
multistage scenario tree, one usually considers a reduced set of scenarios, by using scenario reduction
schemes.

Figure 1: The scenario tree nodes are labeled by three indexes
(tkl : stage t, group k and leaf l).

In this context we call ‘group of nodes’ each set of nodes with the same ancestor. We find it convenient
to label the nodes of the multistage scenario tree by using three indexes: tkl, where t is the stage, k is
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the group of nodes and l is the node in group k. For example, in Fig. 1 we observe that at stage 2 we
have only one group of nodes (node 111 is the common ancestor) and at stage 3 we have two groups
of nodes. At each stage t ∈ T the groups of nodes are labeled by k ∈ Kt. At each group k of stage
t the nodes are labeled by l ∈ Lt. This notation is not the standard one but we use it since it will be
useful to compare the ELP and SLP approaches. Note that KtLt is the number of scenario groups at
stage t in the standard notation for multistage trees.

On the other hand, the vectors and the parameters associated to each node are indexed accordingly.
Associated to each node tkl of the multistage scenario tree there are the following elements:

• ξ̃tl, realization of the random vector ξt. Note that under the assumption of stagewise indepen-
dence we have that ξ̃tkl = ξ̃tk′l for any k, k′ ∈ Kt and therefore we can drop the index k and
write ξ̃tl.

• ξ̃[t], realization of the random history ξ[t], where

ξ̃[t] = (ξ̃1,l(1), . . . , ξ̃t−1,l(t−1), ξ̃tl)

is the realization of ξ[t] that determines node tkl.

• ptkl, probability of reaching node tkl, that is,

ptkl = P
(
ξ[t] = ξ̃[t]

)
= π1,l(1) · · ·πt−1,l(t−1) πtl.

For each stage t ∈ T , we have that
∑

kl∈KtLt ptkl = 1.

• xtkl, decision vector taken at stage t after observing ξ̃[t], that is,

xtkl = xt(ξ̃[t]).

2.2 Deterministic equivalent SLP problem

Based on the multistage scenario tree, the deterministic equivalent SLP problem can be written as
follows:

min
x

zSLP (x) =
∑
t∈T

∑
kl∈KtLt

ptkl c
ᵀ
txtkl (5)

s.t. A1x111 = ξ̃11 (6)
t−1∑
τ=1

Btτxat−τ (tkl) +Atxtkl = ξ̃tl ∀ tkl ∈ T +KtLt (7)

x ≥ 0, (8)

where ξ̃11 = b1, a(tkl) is the ancestor of node tkl, a2(tkl) = a(a(tkl)) is the second ancestor of node
tkl and so on. Note that in (7), the rhs term ξ̃tl does not depend on the group of nodes k, and for this
reason we do not write ξ̃tkl. See in [11] some approaches for computing or estimating the value of the
SLP solution based on decomposition schemes.
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3 The multistage expected value LP problem

If the SLP problem becomes too difficult, one can use the popular multistage Expected Value (EV)
problem, which lower bounds the SLP problem by using the expected values of the random process
instead of the random process itself. In our context, the EV problem is as follows:

min
x̄

zEV (x̄) =
∑
t∈T

cᵀt x̄t (9)

s.t. A1x̄1 = ξ̄1 (10)
t−1∑
τ=1

Btτ x̄τ +At x̄t = ξ̄t ∀ t ∈ T + (11)

x̄ ≥ 0, (12)

where ξ̄t = E[ξt]. Notice that, since ξ1 is a deterministic vector equal to b1, in (10) we could just write
ξ1 instead of ξ̄1. However, to maintain the same notation in all the stages, we prefer to write ξ̄1 (in
this way ξ1 is implicitly considered a degenerate random vector which only takes a single value). See
in [22] an approach for analyzing the quality of the EV solution. As we will see in Section 5.1, the
decision vector x̄t, for all t ∈ T , can be interpreted as

x̄t =
∑
t∈T

∑
kl∈KtLt

ptklxtkl = E[ xt(ξ[t]) ].

That is, the resulting vector of applying the expectation operator to the policy xt(ξ[t]). Notice that to
compute an optimal solution x̄∗t it is not necessary to know the set of optimal decisions {x∗tkl}tkl∈T KL.
It is enough to solve the EV problem (9)-(12).

4 The multistage event LP problem

Throughout this paper it will be used the term event, which is defined next.

Definition 1 Event: Given a multivariate stochastic process {ξt}t∈T , let us define event as each real-
ization ξ̃tl of the random vector ξt, for any t ∈ T .

Notice that each scenario corresponds to a realization of the random process {ξt}t∈T . The EV problem
approximates the SLP problem by ignoring uncertainty. As an alternative to the EV problem, we
introduce the multistage Event Linear Programming (ELP) problem, which also approximates the
SLP problem but without ignoring uncertainty. The ELP problem takes into account uncertainty in
a simplified way: Instead of considering scenarios it only considers events (of course, the complete
representation of the uncertainty requires scenarios). To illustrate this idea, let us consider a four-stage
problem where at each future stage only two events can occur: At and Bt, for t = 2, 3, 4. Problem SLP,
based on scenarios, considers all possible paths from node A1 to nodes A4 and B4 to built the scenario
tree (Fig. 2). In contrast, problem ELP, based on events, ignores these paths and only considers a
sequence of T − 1 connected two-stage trees (Fig. 3). For each t ∈ T −, there is a two-stage tree
whose root node accounts for the expected decision at stage t and whose leave nodes account for the
possible events at stage t+ 1 and the corresponding decisions.
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Figure 2: The 8 possible paths from A1 to A4 and B4 (scenarios)
can be represented by a multistage scenario tree.

Figure 3: The scenario tree in Figure 2 can be ‘approximated’ by
the event spike: a sequence of 3 connected two-stage trees with 3
nodes each (x̄t, At+1 and Bt+1, for t = 1, 2, 3).
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4.1 The event spike

In the case of the ELP problem, as it was the case for the SLP problem, it is convenient to consider
the deterministic equivalent ELP problem for computational purposes. First, we will present the deter-
ministic equivalent ELP problem, which is based on the event spike structure that we describe in this
section. Second, we will introduce the ELP problem.

In the ELP approach, the scenario tree is approximated by the event spike, where we have the stem and
one group of leaves per each stage. On the one hand, at each stage t there is one leaf node l per each
event ξ̃tl. On the other hand, the stem corresponds to the sequence of expected decisions x̄1, . . . , x̄T−1

(Fig. 3). Therefore, the event spike structure has two types of nodes: stem nodes labeled by the index
t ∈ T − and leaf nodes labeled by the pair tl ∈ T +Lt. Note that the number of stem nodes is T −1 and
the number of leaf nodes is L2 + . . . + LT . If the number of leaf nodes is constant for all the stages,
then the number of leaf nodes is (T − 1)L, in contrast with the exponential number of nodes in the
multistage scenario tree of our consideration. Associated to each leaf node tl there are three elements:

• ξ̃tl, event tl.

• πtl, probability of event tl. For each stage t ∈ T , we have that
∑

l∈Lt πtl = 1.

• x̂tl, decision vector.

Finally, the expected decision at stage t can be expressed as

x̄t =
∑
l∈Lt

πtl x̂tl ∀ t ∈ T −.

4.2 Deterministic equivalent ELP problem

Based on the event spike, the deterministic equivalent ELP problem can be written as follows:

min
x̂, x̄

zELP (x̂) =
∑
t∈T

∑
l∈Lt

πtl c
ᵀ
t x̂tl (13)

s.t. A1x̂11 = ξ̃11 (14)
t−1∑
τ=1

Btτ x̄τ +Atx̂tl = ξ̃tl ∀ tl ∈ T +Lt (15)

x̄t =
∑
l∈Lt

πtl x̂tl ∀ t ∈ T − (16)

x̂ ≥ 0, x̄ ≥ 0. (17)

In the previous section we have seen that x̄t can be interpreted as E[xt(ξ[t])]. In Section 5.1 we will
see that the decision vector x̂tl can be interpreted in terms of the conditional expectation such that

x̂tl = E[ xt(ξ[t]) | ξ̃tl ] ∀ tl ∈ T Lt.

That is, the resulting vector of applying the conditional expectation operator to the policy xt(ξ[t]) given
that ξt = ξ̃tl.
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4.3 ELP problem

The deterministic equivalent ELP problem (13)-(17) can be written in a more compact form in what
we call the ELP problem:

min
x̂, x̄

zELP (x̂) =
∑
t∈T

E[ cᵀt x̂t(ξt) ]

s.t. A1x̂1(ξ1) = ξ1 (18)
t−1∑
τ=1

Btτ x̄τ +Atx̂t(ξt) = ξt a.s.,∀ t ∈ T + (19)

x̄t = E[ x̂t(ξt) ] ∀ t ∈ T − (20)

x̂t(ξt) ≥ 0 a.s.,∀ t ∈ T (21)

x̄t ≥ 0 ∀ t ∈ T −. (22)

Notice that the main difference with the SLP problem corresponds to the dynamic constraint system
(3). In the ELP problem, this set of constraints is approximated at each stage t by considering not the
past decisions x1, . . . , xt−1 but its expectation x̄1, . . . , x̄t−1 as it can be seen in (19). Furthermore, at
each stage t, the SLP problem considers xt(ξ[t]), that is, one decision vector per each realization of ξ[t],
also known as scenario group (see e.g. [4] for the related definition in the multistage scenario tree).
In contrast, at each stage t, the ELP problem only considers x̂t(ξt), that is, one decision vector per
realization of ξt as it can be seen in (19). Therefore, the SLP problem takes into account the random
histories ξ[t], whereas the ELP problem only takes into account the random vectors ξt. Going further
in the simplification, the EV problem just takes into account the expectations ξ̄t. In this way, the ELP
and EV problems are approximations to the SLP problem that, obviously, reduce both the problem size
and the stochastic accuracy. Thus, regarding tractability and ‘level of stochastic information’ the ELP
problem lies between the SLP and the EV ones.

5 Lower bounds for the SLP solution value

5.1 Preliminary concepts and results

Let us review some preliminary concepts and results to be used in this section. First, we review the
following results on conditional expectation [8].

Theorem 1 ([8], Theorem 4.7.1) Law of Total Probability for Expectations. Let X and Y be random
variables such that Y has finite mean. Then

E[ E[ Y | X ] ] = E[ Y ],

where E[ · ] and E[ · | X] are the expectation operator and the conditional expectation operator,
respectively.

As pointed out in [8], the previous theorem also implies that for two arbitrary random variables X and
Y and for an arbitrary function r such that r(X,Y ) has finite mean, we have

E[ E[ r(X,Y ) | X ] ] = E[ r(X,Y ) ],

by letting Z = r(X,Y ) and noting that E[ E[ Z | X ] ] = E[ Z ]. Furthermore, we can define the
conditional expectation of a function r(X1, . . . , Xn) of several random variables given one or more of

10



the variables X1, . . . , Xn. In this paper we will use the following result, which generalizes Theorem 1
and can be proved in a similar way.

Theorem 2 Let ξ1, . . . , ξn be random vectors and

r(ξ1, . . . , ξn) = (r1(ξ1, . . . , ξn), . . . , rm(ξ1, . . . , ξn))

be an arbitrary vectorial function of the random vectors, such that r(ξ1, . . . , ξn) has finite mean. Then,
for any j ∈ {1, . . . , n} we have that

E[ E[ r(ξ1, . . . , ξn) | ξj ] ] = E[ r(ξ1, . . . , ξn) ].

Second, to illustrate the constraint aggregation concept [2] let us consider the following optimization
problem P :

min
x∈Rn

f(x)

s.t. Aix = bi ∀ i ∈ I,

where I = {1, . . . , I}, Ai is an m × n matrix and bi is an m-vector, for all i ∈ I. Notice that
there are I matrix constraints. In this context, constraint aggregation means that a set of equalities
and/or inequalities is replaced by a linear combination of them. For simplicity of exposition we will
assume that all the matrix constraints in problem P will be aggregated into one single matrix constraint.
In general the scalars or weights of the linear combination are taken positive in order to preserve the
orientation of the constraint inequalities (if any). We denote these weights by vector α = (α1, . . . , αI).
The problem obtained by aggregating the matrix constraints, which we name Pα, corresponds to

min
x∈Rn

f(x)

s.t.
∑
i∈I

αiAix =
∑
i∈I

αibi.

It is clear that if a solution x is feasible for problem P then it is also feasible for problem Pα. So,
problem Pα is a relaxation of problem P obtained by constraint aggregation.

Third, to illustrate the concept of ‘constraint aggregation induced by the expectation operator’, let us
consider a random vector ξ with finite support Sξ = {ξ̃i}i∈I and probability weights πi = P

(
ξ = ξ̃i

)
for all i ∈ I. We name P ξ the following stochastic optimization problem:

min
x∈Rn

f(x(ξ̃1) . . . , x(ξ̃I))

s.t. Ax(ξ̃1) = ξ̃1

. . .

Ax(ξ̃I) = ξ̃I ,

where by abuse of notation, x ∈ Rn means x(ξ̃i) ∈ Rn for all i ∈ I. In this context, the constraint
aggregation problem P ξπ corresponds to

min
x∈Rn

f(x(ξ))

s.t.
∑
i∈I

πiAx(ξ̃i) =
∑
i∈I

πiξ̃i,
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which can also be written in a more compact form by using the expectation operator

min
x∈Rn

f(x(ξ))

s.t. E[ Ax(ξ) ] = E[ ξ ].

Thus, we say that problem P ξπ has been derived from problem P ξ by the constraint aggregation induced
by the expectation operator E[ · ]. Furthermore, it is also clear that problem P ξπ is a relaxation of
problem P ξ obtained by constraint aggregation.

Fourth, to illustrate the use of the conditional expectation operator in this context, let us consider,
additionally to the previous random vector ξ, a new random vector ζ with finite support Sζ = {ζ̃j}j∈J
with J = {1, . . . , J} and the random vector η =

(
ξ
ζ

)
with finite support Sη. We also consider the

conditional random vectors (η | ζ̃1), . . . , (η | ζ̃J), which represent the random vector η given we know
ζ is equal to ζ̃1 or ζ̃2, . . . or ζ̃J , respectively. Each random vector (η | ζ̃j), for all j ∈ J , has finite

support and conditional probability weights pij = P
(
ξ = ξ̃i | ζ = ζ̃j

)
for all i ∈ I.

We name P η the following stochastic optimization problem:

min
x∈Rn

f(x(η))

s.t. Ax(η) = η a.s.

which can be written as

min
x∈Rn

f(x(η))

s.t. Ax(η | ζ̃1) = (η | ζ̃1) a.s.

. . .

Ax(η | ζ̃J) = (η | ζ̃J) a.s.

Notice that in this problem the only random component of (η | ζ̃j) corresponds to the random vector
ξ, since by definition (η | ζ̃j) =

( ξ
ζ̃j

)
for all j ∈ J .

In this context, the constraint aggregation problem P ηp corresponds to

min
x∈Rn

f(x(η))

s.t.
∑
i∈I

pi1Ax(ξ̃i, ζ̃1) =
∑
i∈I

pi1

(
ξ̃i

ζ̃1

)
. . .∑
i∈I

piJAx(ξ̃i, ζ̃J) =
∑
i∈I

piJ

(
ξ̃i

ζ̃J

)
,

which can be written in a more compact form by using the conditional expectation operator

min
x∈Rn

f(x(η))

s.t. E[ Ax(η) | ζ̃1 ] = E[ η | ζ̃1 ]

. . .

E[ Ax(η) | ζ̃J ] = E[ η | ζ̃J ],
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or even in a more compact form

min
x∈Rn

f(x(η))

s.t. E[ Ax(η) | ζ ] = E[ η | ζ ] a.s.

Notice that in this problem, after applying the conditional expectation E[ · | ζ ], the only random
component corresponds to the random vector ζ.

In this context, we say that problem P ηp has been derived from problem P η by the constraint aggrega-
tion induced by the conditional expectation operator E[ · | ζ ]. As in the previous cases, problem P ηp is
a relaxation of problem P η obtained by constraint aggregation.

Fifth, we summarize the notation regarding the expectation operator applied to a policy xt(ξ[t]). For
all t ∈ T , the following notation is considered:

• E[ xt(ξ[t]) ] : the resultant decision vector of applying the expectation operator to the policy
xt(ξ[t]). Vector E[ xt(ξ[t]) ] corresponds to vector x̄t in the EV problem.

• E[ xt(ξ[t]) | ξt ] : the resultant policy of applying the conditional expectation operator to the
policy xt(ξ[t]) given ξt.

• x̂t(ξt) : A shorter expression for the policy E[ xt(ξ[t]) | ξt ]. Notice that a policy x̂t(ξt) in
the ELP problem is a function of the random vector ξt whereas a policy xt(ξ[t]) in the SLP
problem is a function of the random history ξ[t]. Vector x̂t(ξ̃tl) corresponds to vector x̂tl in the
deterministic equivalent ELP problem.

5.2 Lower bounds

It is well-known that for the multistage Stochastic Linear Programming (SLP) problem with the un-
certainty only in the right-hand side (rhs), the multistage Expected Value (EV) problem gives a lower
bound for the SLP solution value [2]. In the context of this paper it means:

z∗EV ≤ z∗SLP ,

where z∗P stands for the solution value of a given problem P . In this section we will prove that the
multistage Event Linear Programming (ELP) problem gives a stronger bound, that is, it will be proved
that

z∗EV ≤ z∗ELP ≤ z∗SLP .

In Theorem 3, it will be proved that z∗ELP ≤ z∗SLP . It is worthy to mention that, the proof of Theorem
3 will also show the connection between problems SLP and ELP: roughly speaking the ELP problem
can be derived by the constraint aggregation induced by the conditional expectation operator applied
to the SLP constraints.

Theorem 3 Let us consider the SLP problem with the rhs defined by the multivariate stochastic pro-
cess {ξt}t∈T . If this stochastic process is stagewise independent then

z∗ELP ≤ z∗SLP . (23)

Proof: The proof consists of nine steps.

13



First, constraint (3) of the SLP problem can be aggregated by using the conditional expectation opera-
tor E[ · | ξt] :

E[
t−1∑
τ=1

Btτxτ (ξ[τ ])) +Atxt(ξ[t]) | ξt ] = E[ ξt | ξt ] a.s., ∀ t ∈ T +

m
t−1∑
τ=1

BtτE[ xτ (ξ[τ ]) | ξt ] +AtE[ xt(ξ[t]) | ξt ] = ξt a.s., ∀ t ∈ T +

m
t−1∑
τ=1

BtτE[ xτ (ξ[τ ]) ] +AtE[ xt(ξ[t]) | ξt ] = ξt a.s., ∀ t ∈ T +, (24)

where, to deduce the last equation we have used that by hypothesis the stochastic process {ξt}t∈T is
stagewise independent.

Now, considering that xt(ξ[t]) is a vectorial function of the random vectors ξ1, . . . , ξt, by Theorem 2
we can write

E[ xt(ξ[t]) ] = E[ E[ xt(ξ[t]) | ξt ] ] ∀ t ∈ T .

By using this equality, equation (24) can be rewritten as

t−1∑
τ=1

BtτE[ E[ xτ (ξ[τ ]) | ξτ ] ] +AtE[ xt(ξ[t]) | ξt ] = ξt a.s.,∀ t ∈ T +.

Second, constraint (2) of the SLP problem is related to the first stage and it is equivalent to

A1E[ x1(ξ[1]) | ξ1 ] = ξ1.

Third, constraint (4) of the SLP problem can also be aggregated by using the conditional expectation
operator:

E[ xt(ξ[t]) | ξt ] ≥ 0 a.s.,∀ t ∈ T .

Fourth, by Theorem 2, the SLP objective function can be rewritten as

zSLP (x) =
∑
t∈T

E[cᵀtxt(ξ[t]) ] =
∑
t∈T

cᵀtE[xt(ξ[t]) ]

=
∑
t∈T

cᵀtE[ E[ xt(ξ[t]) | ξt ] ] =
∑
t∈T

E[ cᵀtE[ xt(ξ[t]) | ξt ] ].

Fifth, after applying the conditional expectation operator to the SLP problem, it results the following
problem with aggregated constraints which is named P1 :

min
x

zP1(x) =
∑
t∈T

E[cᵀt E[ xt(ξ[t]) | ξt ] ]

s.t. A1E[ x1(ξ[1]) | ξ1 ] = ξ1

t−1∑
τ=1

BtτE[ E[ xτ (ξ[τ ]) | ξτ ] ] +AtE[ xt(ξ[t]) | ξt ] = ξt a.s.,∀ t ∈ T +

E[ xt(ξ[t]) | ξt ] ≥ 0 a.s.,∀ t ∈ T .

14



Sixth, to proceed with the proof, problem P2 is derived from problem P1 as follows:

min
x̂

zP2(x̂) =
∑
t∈T

E[ cᵀt x̂t(ξt) ] (25)

s.t. A1x̂1(ξ1) = ξ1 (26)
t−1∑
τ=1

BtτE[ x̂τ (ξτ ) ] +Atx̂t(ξt) = ξt a.s., ∀ t ∈ T + (27)

x̂t(ξt) ≥ 0 a.s., ∀ t ∈ T , (28)

where vector x̂t(ξt) accounts for E[ xt(ξ[t]) | ξt ] for all t ∈ T .

Seventh, problem P2 can be written equivalently as

min
x̂, x̄

∑
t∈T

E[ cᵀt x̂t(ξt) ]

s.t. A1x̂1(ξ1) = ξ1

t−1∑
τ=1

Btτ x̄τ +Atx̂t(ξt) = ξt a.s., ∀ t ∈ T +

x̄t = E[ x̂t(ξt) ] ∀ t ∈ T −

x̂t(ξt) ≥ 0 a.s., ∀ t ∈ T
x̄t ≥ 0, ∀ t ∈ T −

which is the ELP problem.

Eighth, by comparing the solution values of all these problems it can be written

z∗ELP = z∗P2
≤ z∗P1

≤ z∗SLP ,

where the first inequality on the left will be proved in step nine and the second inequality comes from
the fact that problem P1 is a relaxation of the SLP problem obtained by constraint aggregation.

Ninth, to conclude, it will be proved that z∗P2
≤ z∗P1

. Let us assume that x∗ is an optimal solution for
P1 and define x̂ such that

x̂t(ξ̃tl) = E[ x∗t (ξ[t]) | ξ̃tl ] ∀ ξ̃tl ∈ Sξt ,∀ t ∈ T .

It is easy to see that x̂ thus defined is feasible for problem P2 (stated in (25)-(28)) and that zP2(x̂) =
zP1(x∗) which proves z∗P2

≤ z∗P1
.

In Theorem 4 it will be proved that z∗EV ≤ z∗ELP . The proof of Theorem 4 will also show the
connection between the ELP and the EV problems: roughly speaking the EV problem can be derived
by the constraint aggregation induced by the expectation operator applied to the ELP constraints.

Theorem 4 The solution value of the EV problem is a lower bound of the solution value of the ELP
problem, i.e.,

z∗EV ≤ z∗ELP .

Proof: This proof is analogous to the proof of Theorem 3 (it also consists of nine steps).
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First, constraints (19) of the ELP problem can be aggregated by using the expectation operator E[ · ]
for all t ∈ T +:

E[
t−1∑
τ=1

Btτ x̄τ +Atx̂t(ξt) ] = E[ ξt ] ∀ t ∈ T +

m
t−1∑
τ=1

Btτ x̄τ +AtE[ x̂t(ξt) ] = ξ̄t ∀ t ∈ T +

where ξ̄t := E[ ξt ].

Second, constraint (18) of the ELP problem is related to the first stage and then, being a deterministic
one, it is equivalent to

A1E[ x̂1(ξ1) ] = ξ̄1.

Third, constraint (21) of the ELP problem can also be aggregated by using the expectation operator:

E[ x̂t(ξt) ] ≥ 0 ∀ t ∈ T .

Fourth, the ELP objective function can be rewritten as

zELP (x) =
∑
t∈T

E[ cᵀt x̂t(ξt) ]

=
∑
t∈T

cᵀtE[ x̂t(ξt) ]

Fifth, after applying the expectation operator to the ELP problem, it results the following problem with
aggregated constraints which is named P3 :

min
x̂, x̄

zP3(x̂) =
∑
t∈T

cᵀt E[ x̂t(ξt) ]

s.t. A1E[ x̂1(ξ1) ] = ξ̄1

t−1∑
τ=1

Btτ x̄τ +AtE[ x̂t(ξt) ] = ξ̄t ∀ t ∈ T +

x̄t = E[ x̂t(ξt) ] ∀ t ∈ T −

E[ x̂t(ξt) ] ≥ 0 ∀ t ∈ T
x̄t ≥ 0 ∀ t ∈ T −.

Sixth, to proceed with the proof, problem P4 is derived from problem P3 as follows

min
x̆, x̄

zP4(x̆) =
∑
t∈T

cᵀt x̆t (29)

s.t. A1x̆1 = ξ̄1 (30)
t−1∑
τ=1

Btτ x̄τ +Atx̆t = ξ̄t ∀ t ∈ T + (31)

x̄t = x̆t ∀ t ∈ T − (32)

x̆t ≥ 0 ∀ t ∈ T (33)

x̄t ≥ 0 ∀ t ∈ T −, (34)
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where vector x̆t accounts for E[ x̂t(ξt) ] for all t ∈ T .

Seventh, we can rewrite P4 as

min
x̆

zP4(x̆) =
∑
t∈T

cᵀt x̆t

s.t. A1x̆1 = ξ̄1

t−1∑
τ=1

Btτ x̆τ +Atx̆t = ξ̄t ∀ t ∈ T +

x̆t ≥ 0 ∀ t ∈ T ,

which corresponds to the EV problem.

Eighth, by comparing the solution values of all these problems it can be written

z∗EV = z∗P4
≤ z∗P3

≤ z∗ELP ,

where the first inequality on the left will be proved in step nine and the second inequality comes from
the fact that problem P3 is a relaxation of the ELP problem obtained by constraint aggregation.

Ninth, to conclude, it will be proved that z∗P4
≤ z∗P3

. Let us assume that (x̂∗, x̄∗) is an optimal solution
for P3 and define x̆ such that

x̆t = E[ x̂∗t (ξt) ] ∀ t ∈ T .

It is easy to see that (x̆, x̄∗) thus defined is feasible for problem P4 (stated in (29)-(34)) and that
zP4(x̆) = zP3(x̂∗) which proves z∗P4

≤ z∗P3
.

Corollary 1 Let us consider the SLP problem with the rhs defined by the multivariate stochastic pro-
cess {ξt}t∈T . If the stochastic process is stagewise independent then

z∗EV ≤ z∗ELP ≤ z∗SLP .

6 Algorithm for obtaining the expected result of using the expected value
solution for multistage stochastic optimization

The methodology for obtaining the Expected result of using the Expected Value solution (EEV) is very
well established in the two-stage environment, see a good exposition in e.g. [4], but it is a difficult one
for multistage problems, see [22]. The main difficulty lies in the same concept of multistage EEV.
Alternatively, we use the methodology introduced in [10] for obtaining EEV in a rolling horizon type
of calculation. Basically, it is as follows:

1. Retain the EV solution for the first stage.

2. Once the first stage EV solution is fixed, stage t = 2 is considered, so that KtLt independent
scenario subtrees remain.

3. The EV solutions are independently obtained for these scenario subtrees.

4. The first stage solution of the EV problem for each scenario subtree is retained and, then, fixed.

5. The procedure continues for the other stages in the scenario tree until stage T is reached.
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So, at the end of the process there is a solution for each node in the scenario tree (and, then, for each
scenario). The EEV is obtained by weighting the solution values for the scenarios as they have been
calculated by the procedure. Let us specify the details of this methodology in Algorithm 1.

Algorithm 1: Multistage EEV.

1. Objective: To obtain a good feasible solution for problem SLP given
by
equations (5)-(8).

2. Initialization:

(a) Iteration counter t := 0.

(b) Set of constraints C1 := ∅.

3. Main iteration: Repeat while t < T :

(a) Set t := t+ 1.

(b) Consider problem SLP (5)-(8) with the additional constraints
given
by Ct. This problem can be decomposed into KtLt independent
subproblems SLP
with T + 1− t stages (one per node tkl, ∀kl ∈ KtLt).

(c) Let PSLP (tkl) be the subproblem corresponding to node tkl, ∀kl ∈
KtLt.

(d) Let PEV (tkl) be the EV subproblem that approximates subproblem
PSLP (tkl), ∀kl ∈ KtLt.

(e) Solve subproblem PEV (tkl) to obtain an optimal solution x̄∗(tkl), ∀kl ∈
KtLt.

(f) Set Ct+1 := Ct ∪ {”xtkl = x̄∗1(tkl)” | ∀kl ∈ KtLt}.

4. Solution recovering:

(a) Set the EEV solution as xEEVtkl := x̄∗1(tkl) ∀tkl ∈ T KtLt.
(b) Compute the EEV value as zSLP (xEEV ).

Notice that in the previous algorithm:

• It is not guaranteed that the EEV solution is feasible for problem SLP.

• However, it is not difficult to prove that, if all subproblems PEV (tkl) for all tkl ∈ T KtLt are
feasible, then the EEV solution is feasible for problem SLP and, in this case, EEV is an upper
bound to the optimal value of problem SLP. This has been the case in the revenue management
instances solved in Section 7.

• We have to solve a subproblem EV per node of the SLP scenario tree, that is, the total number
of subproblems EV has order LT−1 (assuming that the number of possible events per stage is
constant and equal to L).

• At each iteration t the subproblems PEV (tkl), ∀kl ∈ KtLt, are independent and therefore can
be solved in parallel. That is, Algorithm 1 is highly appropriate for parallel computing.

On the other hand, the Expected result of using the ELP solution (EELP) can be obtained analogously,
that is, in the previous algorithm we should replace EV with ELP.
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7 Computational experience

7.1 The network revenue management problem

For computationally assessing the validity of the ELP heuristic that combines the ELP lower bound
and the EELP upper bound, we have chosen as our pilot case the so named network revenue man-
agement problem for the flight tickets selling, taken from [23]. The aim of revenue management in
general consists of maximizing the revenue of selling limited quantities of a set of resources by means
of demand management decisions. A resource in revenue management is usually a perishable prod-
uct/service, such as seats on a single flight leg or hotel rooms for a given date. It is common in revenue
management that multiple resources are sold in ‘bundles’. For instance, connecting flight legs are sold
on a single ticket and hotel customers may stay multiple nights. In this case, the lack of availability of
any resource will prevent sales of the bundle, which creates interdependence among these resources.
Consequently, the demand management decisions of these resources must be coordinated. It is usual
in revenue management to protect the availability of resources along the time interval that ends at the
period at which the resources are used. So, the accumulative booking of each resource is prevented
beyond a protection level that is, obviously, increasing along the time horizon.

The following notation is used to describe the network revenue management problem:

Sets:

H, set of resources (with size H).

I, set of bundles (with size I).

J , set of fare classes (with size J).

Ih, set of bundles using resource h, for h ∈ H.

IJ , stands for I × J .

Deterministic parameters:

f ij , fare of bundle-class ij, for ij ∈ IJ .

Ch, capacity on resource h, for h ∈ H.

ub(P ijtkl), upper bound on the protection level variable P ijtkl (defined below) for ij ∈ IJ , tkl ∈
T −KtLt.

Uncertain parameters:

ξijtl , demand for bundle-class ij in period t at node tkl, for tkl ∈ T +KtLt.

Variables:

bijtkl, number of accepted bookings for bundle-class ij in period t at node tkl, for ij ∈ IJ , tkl ∈
T +KtLt.

19



Bij
tkl, cumulative number of accepted bookings of bundle-class ij along the path from the root to node

tkl, for ij ∈ IJ , tkl ∈ T +KtLt.

P ija(tkl), protection level of bundle-class ij set at the immediate ancestor, say a(tkl) of node tkl, along
the path from the root to node tkl, for ij ∈ IJ , tkl ∈ T +KtLt.

SLP problem

The multistage Stochastic Linear Programming (SLP) problem for network revenue management with
protection levels is as follows:

max
b,B,P

∑
tkl∈T +KtLt

ptkl
∑
ij∈IJ

f ijbijtkl (35)

s.t. Bij
tkl = Bij

a(tkl) + bijtkl ∀ tkl ∈ T +KtLt, ij ∈ IJ (36)

Bij
tkl ≤ P

ij
a(tkl) ∀ tkl ∈ T +KtLt, ij ∈ IJ (37)∑

ij∈IhJ
P ijT−1,kl ≤ C

h ∀ kl ∈ KT−1LT−1, h ∈ H (38)

0 ≤ bijtkl ≤ ξ̃
ij
tl ∀ tkl ∈ T +KtLt, ij ∈ IJ (39)

0 ≤ P ijtkl ≤ ub(P
ij
tkl) ∀ tkl ∈ T −KtLt, ij ∈ IJ . (40)

Constraints (36) define the booking balance equations. Notice that Bij
111 corresponds to the initial

number of accepted bookings, which is a parameter of the problem for all ij ∈ IJ . Constraints
(37) ensure that the cumulative number of accepted bookings along the path from the root to node
tlk cannot exceed the protection level set at the ancestor node a(tlk). Notice that all the nodes with
the same immediate ancestor share the same protection level. The protection levels across bundles
and class fares are then bounded by the capacity on the resources in constraints (38). Constraints (39)
reflect that the number of accepted bookings should be not greater than the demand. Constraints (40)
bound the protection levels. Notice that the non-anticipativity constraints are satisfied by construction;
see e.g. in [4] good expositions of this important concept on stochastic optimization. We will refer to
this problem as SLP.

EV problem

The multistage Expected Value (EV) problem is as follows:

max
b̄,B̄,P̄

∑
t∈T +

∑
ij∈IJ

f ij b̄ijt (41)

s.t. B̄ij
t = B̄ij

t−1 + b̄ijt ∀ t ∈ T +, ij ∈ IJ (42)

B̄ij
t ≤ P̄

ij
t−1 ∀ t ∈ T +, ij ∈ IJ (43)∑

ij∈IhJ
P̄ ijT−1 ≤ C

h ∀ h ∈ H (44)

0 ≤ b̄ijt ≤ ξ̄
ij
t ∀ t ∈ T +, ij ∈ IJ (45)

0 ≤ P̄ ijt ≤ ub(P̄
ij
t ) ∀ t ∈ T −, ij ∈ IJ . (46)

Notice that in the EV problem the decision vectors are denoted by b̄, B̄ and P̄ .
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ELP problem

The multistage Event Linear Programming (ELP) problem is as follows:

max
b̂,B̂,B̄,P̄

∑
tl∈T +Lt

πtl
∑
ij∈IJ

f ij b̂ijtl (47)

s.t. B̂ij
tl = B̄ij

t−1 + b̂ijtl ∀ tl ∈ T +Lt, ij ∈ IJ (48)

B̂ij
tl ≤ P̄

ij
t−1 ∀ tl ∈ T +Lt, ij ∈ IJ (49)∑

ij∈IhJ
P̄ ijT−1 ≤ C

h ∀ h ∈ H (50)

B̄ij
t =

∑
l∈Lt

πtlB̂
ij
tl ∀ t ∈ T −, ij ∈ IJ (51)

0 ≤ b̂ijtl ≤ ξ̃
ij
tl ∀ tl ∈ T +Lt, ij ∈ IJ (52)

0 ≤ P̄ ijt ≤ ub(P̄
ij
t ) ∀ t ∈ T −, ij ∈ IJ . (53)

Notice that in the ELP problem the decision vectors are denoted by b̂, B̂, B̄ and P̄ . Furthermore, B̂ij
11

corresponds to the initial number of accepted bookings, which is a parameter of the problem for all
ij ∈ IJ .

7.2 Testbed description

In this numerical study, we consider a small network, a medium, and a large one. Next, we introduce
first the dimensions and then the structure of our test networks. Finally, we discuss the fares and the
demand model.

Recall that, in this context, the dimensions of a network are given by its number of resources H ,
bundles I and fare classes J . So, they are as follows: SMALL network: H = 10, I = 18, J = 2;
MEDIUM network: H = 100, I = 200, J = 2; and LARGE network: H = 500, I = 1000, J = 2.

In terms of network structure, we follow the standard practice in the literature to use randomly gen-
erated networks with a hub-and-spoke structure [1], resembling networks seen in hub-based airlines.
Among the resources, the first half are spoke-to-hub flight legs and the second half are hub-to-spoke
flight legs. The bundles are generated as follows. In the SMALL network, the first 10 bundles each
use one of the 10 legs, and the remaining 8 each use two random legs, spoke1-to-hub and
hub-to-spoke2. In the MEDIUM network, the first 100 bundles each use one of the 100 legs,
the next 75 each use two random legs, spoke1-to-hub and hub-to-spoke2, and finally the
last 25 each use four random legs spoke1-to-hub, hub-to-spoke2, spoke2-to-hub and
hub-to-spoke1. Similarly, in the LARGE network, the first 500 bundles each use one of the 500
legs, the next 375 each use two random legs, and finally the last 125 each use four random legs. See
[12].

We now present the way the fares and the demands have been generated following the scheme pre-
sented in [12]. The class 1 fare of a single-resource bundle is generated from a normal distribution
with mean 100 and standard deviation 40, truncated within the interval [20, 180]. The class 1 fare of a
multi-resource bundle is the summation of the class 1 fares of the single-resource bundles associated
with its resources. For all bundles, the fare of class 2 is 1.4 times that of class 1. As usual in the litera-
ture, demands are modeled using a Poisson distribution. The demand for bundle-class ij in period t is
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generated from a Poisson distribution with mean µijt := βijt µ, where

µ = η

∑
h∈HC

h

I × J × T
.

Since all the parameters that define µ are constant, the higher η the higher the demand. Therefore,
we refer to η as the “load factor of demand”, which has been set equal to 2 in this computational
experience. With respect to βijt, we have chosen them higher for single-resource bundles than for
multi-resource ones. These parameters are also dynamic with respect to the time-to-service. For
j = 1, 2, βijt decreases when getting closer to the departure, eventually becoming zero. Notice
that the demands thus modeled are independent and the ELP heuristic can be used. However, this
simplification in the demand model may be inaccurate. Thus, for example, the opportunity cost of
neglecting dependency of demands across fare classes can be of the order of 2% [18]. Therefore,
further research effort should be devoted to allow for correlated demands (rhs) in the ELP heuristic as
pointed out in Section 8.

We use the optimization engine CPLEX v12.3, for solving the LP problems arising. Our experiments
were conducted on a PC with a 2.33 GHz Intel Xeon dual core processor, 8.5 GB of RAM and the
operating system was LINUX Debian 4.0.

Tables 1, 2 and 3 present for the 20 instances for each of the three network sizes tested in our compu-
tational experience, the scenario tree structure and the dimensions of the three LP problems subject of
our computational comparison testing, namely, SLP (35)-(40), EV (41)-(46) and ELP (47)-(53). The
headings are as follows: case, instance name; T , the number of periods; L, number of immediate suc-
cessor nodes (obviously, belonging to the next stage) from a node of any stage; N , number of nodes in
the scenario tree; S, number of scenarios; n, number of variables; m, number of constraints nz, num-
ber of nonzero elements in the constraint matrix; dens, constraint matrix density in %. We can observe
the high dimensions of the instances: up to 7 millions of variables and 6 millions of constraints for
SMALL networks, up to 78 millions of variables and 71 millions of constraints for MEDIUM networks,
and up to 393 millions of variables and 357 millions of constraints for LARGE networks.

7.3 Computational results

Tables 4, 5 and 6 present for the SMALL, MEDIUM and LARGE networks the main computational
results for the three LP problems SLP, EV and ELP, respectively. The headings are as follows: ZSLP ,
ZEV and ZELP , solution values of the original SLP problem and the problems EV and ELP, respec-
tively. Note: ZEV and ZELP are upper bounds of ZSLP , such that ZEV ≥ ZELP ≥ ZSLP (notice
that SLP is a maximization problem); tSLP , tEV and tELP , computing time (secs.) required for
obtaining ZSLP , ZEV and ZELP , respectively; ZEEV and ZEELP , solution values of the SLP feasi-
ble solutions obtained by using the EEV and EELP procedures, respectively, described in Section 6
(notice that ZEEV and ZEELP are lower bounds of ZSLP ); and tEEV and tEELP , computing time
(secs.) required for obtaining ZEEV and ZEELP , respectively. Some gaps are reported as the relative
differences in % of several solution values, such as

GAP 1 = (ZEV − ZSLP ) /ZSLP%

GAP 2 = (ZSLP − ZEEV ) /ZSLP%

GAP 3 = (ZEV − ZEEV ) /ZEV %

GAP 4 = (ZELP − ZSLP ) /ZSLP%

GAP 5 = (ZSLP − ZEELP ) /ZSLP%

GAP 6 = (ZELP − ZEELP ) /ZELP%.
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Finally,mean gives the average values of the gaps and the computing times in the instances considered
in each table.

Our first observation is that the computing time for solving problem SLP (i.e., solving the original
problem by plain use of CPLEX) generally is high for non trivial instances and, even the original
problem has not been solved for instances c18, c32, c35, c37, c38, c40, c52, c54, c55, c57, c58,
c59 and c60 (i.e., a 22% of our testbed), due to reach the allowed computing time (2 hours in our
experimentation). Additionally, we can observe that the computing time for obtaining the upper bounds
ZEV and ZELP (i.e., the solution values of the problems EV and ELP, respectively) is very small, on
average, even it does not reach a second. On the other side, the computing time requirements for
obtaining the SLP feasible solutions whose values are ZEEV and ZEELP do not exceed 114 and 63
secs. for the SMALL network, respectively, 642 and 1573 secs. for the MEDIUM network, respectively,
and 5210 and 7437 secs. for the LARGE network, respectively. Although the computing time required
for obtaining the solution value ZEELP is a bit higher than the time for obtaining ZEEV , the optimality
gap of the former solution value is smaller than the optimality gap of the latter one. Thus for example,
in Table 5 the mean of the EELP optimality gap is GAP 5 = 0.13% while the mean of the EEV
optimality gap isGAP 2 = 1.48%. In any case, the gap is very small in both solution values. Finally, it
is interesting to consider the quasi-optimality of the solutions values obtained by both approaches in the
biggest instance (i.e., c58), being GAP 6 = 0.48% for the ELP-based approach and GAP 3 = 3.29%
for the EV-based approach, being a representative comparison of themean value of the three networks
considered in our experiment, see last line of Tables 4, 5 and 6.

Regarding the computational complexity notice that the number of variables and constraints in the EV,
ELP and SLP problems has order T, L(T −1) and LT−1, respectively (assuming a number of possible
events per stage constant and equal to L). On the other hand, the number of subproblems EV (ELP) to
be solved in the EEV (EELP) approach has order LT−1.

8 Conclusions

In this paper we have considered the multistage Stochastic Linear Programming (SLP) problem with a
stochastic right-hand side (rhs), which is assumed to be discrete and stagewise independent. We have
introduced the multistage Event Linear Programming (ELP) problem whose objective is to approxi-
mate the SLP problem. The main difference is that the former considers all the possible successions of
events (scenario tree), whereas the ELP problem is bounded to only consider the events (event spike).

Roughly speaking, we have proved that the ELP problem can be derived from the SLP problem by
constraint aggregation. This aggregation is obtained by applying the conditional expectation operator
to the SLP constraints. In a similar way, we have proved that the Expected Value (EV) problem can be
derived from the ELP problem also by constraint aggregation. In this case, the aggregation is obtained
by applying the plain expectation operator to the ELP constraints. The main consequence of these
aggregations is that the EV and ELP solution values are lower bounds of the SLP solution value (for
minimization problems). We have also shown that the ELP bound is tighter than the EV bound.

From a practical point of view, we have assessed the validity of the ELP approach by solving large scale
instances of the network revenue management problem for the flight tickets selling. We have used 60
instances whose sizes for the SLP problem range form one thousand of variables and constraints to over
393 millions of variables and 357 millions of constraints. In our computational experience the ELP
approach has obtained SLP solutions whose objective values are almost optimal and significantly better
than the ones obtained by the EV approach. Regarding the numerical tractability we have observed
that even for large scale SLP instances the ELP heuristic is a tractable approximation, where the plain
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use of CPLEX very frequently fails. All in all, the main conclusion is that regarding the capacity to
deal with uncertainty and the numerical tractability, the ELP approach lies between the SLP and the
EV approaches.

Finally, we would like to point out some limitations of the results here presented. The first limitation,
is that they only consider randomness on the right-hand side, which is assumed to be discrete and
stagewise independent. The second limitation is that, although, in the computational experiment we
have observed that the EEV value is dominated by the EELP value, we have not proved it theoretically.
The third limitation is that this stochastic model is risk neutral. That is, it is based on the expected cost
and it does not incorporate any risk averse measure as for example the conditional value at risk, or the
mixture of first and second order stochastic dominance constraints. As a matter of future research, the
authors are planning to improve the ELP approach regarding these aspects.
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