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Abstract

We propose and analyze an effective model for the Multistage Multiproduct Advertising Bud-
geting problem. This model optimizes the advertising investment for several products, by consid-
ering cross elasticities, different sales drivers and the whole planning horizon. We derive a simple
procedure to compute the optimal advertising budget and its optimal allocation. The model was
tested to plan a realistic advertising campaign. We observed that the multistage approach may
significantly increase the advertising profit, compared to the successive application of the
single stage approach.

Key words: Marketing, advertising budgeting, market response models, convex programming,
multistage optimization.

1 Introduction

In this article we address the Multistage Multiproduct Advertising Budgeting problem (for short, we
will drop one M and call it the MAB problem). More specifically, by advertising budgeting we mean
that we wish to decide the capital to be invested on advertising and how to allocate it in an optimal
way. By multiproduct we mean that we simultaneously optimize the advertising campaigns of different
products within the same company by using different media (television, radio, internet, etc.) and con-
sidering cross product effects [9]. By multistage, we mean that we optimize the advertising campaigns
for the whole planning horizon.

Every year many companies spend thousands of euros to advertise and promote their products. An ap-
propriate optimizing technology can help either to obtain better advertising results for a given budget
or to reduce the advertising expenses. We are living the era of Big Data, where companies gather and
manage huge data bases [13]. By using market response models we can transform this raw marketing
information into ‘ready to use’ information [16]. For example, we can model the sales due to adver-
tising as a function of the advertising investment. The direct use of these models is to study different
outcomes to take a ‘good’ decision. A more effective use is to combine them with a utility function
to construct an optimization model intended to give a ‘best’ decision. The relevance of the advertising
budgeting problem for the marketing industry is discussed in [13].

The advertising budgeting problem has been addressed in literature from different perspectives. An
introductory and interesting paper can be found in [9] where the authors propose a simple formula
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for calculating the optimal level of media spending in the case of a single product, single medium
and a single stage. The multiproduct advertising budgeting problem is analyzed in [10], whereas the
multistage advertising budgeting problem is studied in [26]. In some cases, due to the complexity of the
formulation one has to use heuristic methods which produce good (suboptimal) solutions [29, 22]. In
other cases if the complexity of the formulation is moderate, depending on the focus of the model, one
can use an optimal control approach [28, 12, 15] or a stochastic optimization approach [1, 11, 2], or a
stochastic optimal control approach [5], or a game theory approach [21, 23, 8], or a goal programming
approach [3], among others.

As we have mentioned, different aspects of the advertising budgeting problem have been considered.
However, as far as we know, a multistage version of the multiproduct advertising budgeting problem
has not yet been addressed in literature. Thus, for example, [26] considers a multistage setting but
for a single product whereas, [10] considers the multiproduct case but for a single stage. However,
as we will illustrate in our case study, relevant savings can be achieved if the planning stages are
optimized simultaneously (multistage models) compared to the optimization stage-by-stage (single
stage models). Therefore, the main contribution of this paper is to propose and analyze a multistage
version of the multiproduct advertising budgeting problem.

The objective of this paper is to propose and analyze an effective formulation for the MAB problem.
We are interested in calculating the optimal advertising budget and its optimal allocation. We will try
to answer the following questions: a) Which is the optimal multiproduct advertising budget for the
whole planning horizon? b) Given an advertising budget, how can we optimally allocate it along the
planning horizon? c) Is it important to consider multistage models? or on the contrary, is it enough to
consider single stage models?

We are also concerned with effectiveness. In [18] it is pointed out that a model that is to be used
by a manager should be simple, robust, easy to control, adaptive, as complete as possible and easy
to communicate with. In line with this recommendation, the MAB model that we propose is simple
but realistic enough to be used in the advertising industry. Furthermore, from a mathematical point of
view, it corresponds to a concave maximization problem which is numerically tractable and allows for
the computing of a (global) optimal solution with moderate computational effort.

The remainder of the paper is organized as follows. In the second section we will formulate the MAB
problem (unconstrained and constrained case). In the third section we will derive a simple procedure
to compute the optimal advertising budget and its optimal allocation. In the fourth section a realistic
case study will allow us to illustrate the effectiveness of the model as well as the theoretical concepts
of the third section. In the last section we will give some conclusions. Appendix A contains the proofs
of all the theoretical results of this article. Appendix B contains the data for the case study in section
fourth.

2 Problem formulation

In order to formulate the Multistage Multiproduct Advertising Budgeting (MAB) problem, we dis-
tinguish between baseline sales (sales that one would expect without advertising) and sales due to
advertising. The objective of the MAB model is to maximize the profit of the sales due to advertising.
Expressed in a different way, we will consider the profit of the sales due to advertising as the measure
of the advertising effectiveness. Prior to formulate the MAB problem, we briefly review some key con-
cepts in the advertising industry (see, for example, [16] for more details). Reach is the proportion of the
target audience exposed to at least one insertion of the advertisement [9]. We call this proportion the
reach audience. Frequency is the average number of times a person from the reach audience is
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exposed to an advertisement. Exposure to an advertisement involves reach and frequency and can be
measured in Gross Rating Points: GRPs ≡ reach × frequency. For example, a purchase of 100 GRPs
could mean that 100% of the market is exposed once to an advertisement or that 50% of the market is
exposed twice [16]. According to [2], advertising is measured in GRPs and not in euros, since there
are two advantages of using GRPs. First, GRPs provide a more accurate picture of advertising input
than advertising expenditures since it is not clear how much advertising exposure can be purchased
for a given budget. Second, most media buying is done in terms of GRPs and managers evaluate the
effectiveness of their campaigns in terms of demand generated per GRP.

The impact of advertising effort spreads over time and the advertising effort in one stage is cumulated
with past advertising efforts. In this respect, we will use the variable so called adstock [4, 16], which
is a measure of the past and current advertising effort that is effective in the current stage. For brand
management, market response models provide a basis for fine tuning marketing mix variables (mar-
keting mix for short), such as price, sales promotions, advertising copy, media selection, timing, and
other brand-specific marketing factors. Furthermore, the marketing mix has to take into account the
market segmentation, that is, the distinct consumer groups, each one characterized by the same needs
and behaviors [7, 6]. The largest category of empirical response models are those dealing with sales
and market share as dependent variables. Companies want to know what influences their sales (the
sales drivers or, for short, drivers). They want to know how to set the marketing mix so that they can
control their sales. One of the limitations of the MAB model that we present is that it does not take the
product price as a sales driver, that is, as a decision variable (prices are input data). All the other above
mentioned drivers (sales promotions, advertising copy, media selection and timing) can be taken into
account in our MAB model. Furthermore, by an abuse of terminology, when we talk about sales due to
advertising, we refer to sales due to these drivers (analogously with advertising budgeting, advertising
allocation, etc.).

2.1 Notation

In our formulation of the MAB problem we consider:

Indexes:
t Index for stages, t ∈ T = {1, . . . , T}.
i Index for products, i ∈ I = {1, . . . , I}.
j (Auxiliary) index for products, j ∈ I.
k Index for sales drivers for product i, k ∈ Ki = {1, . . . ,Ki}. i ∈ I
T IKi Stands for T × I × Ki. i ∈ I

Parameters:
atijk Sales of product i in stage t induced by one unit of driver jk tijk ∈ T IIKi

where j 6= i (note that, for simplicity, to refer to the k-th driver of
product j, we use the expression ‘driver jk’), atijk ∈ R.

ctik Cost of driver ik in stage t ∈ {1, . . . , T + 1}, ctik > 0. ik ∈ IKi
δik Retention rate of the advertising effort from stage to stage

for driver ik, δik ∈ ]0, 1[. ik ∈ IKi
pti Profit per unit of product i in stage t, pti > 0. ti ∈ T I
x̃0ik Advertising effort of driver ik previous to the first stage, ik ∈ IKi

x̃0ik ≥ 0.
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Functions:
Rtik Sales of product i in stage t due to driver ik. tik ∈ T IKi.
Ltijk Sales of product i in stage t due to driver jk where j 6= i

(‘cross product effect’). tijk ∈ T IIKj
Sti Sales of product i in stage t due to advertising. ti ∈ T I
P Profit function (information aggregated by products).
Q̃ Profit function (information aggregated by drivers).

Variables:
gtik Investment in GRPs of driver ik in stage t. tik ∈ T IKi
xtik Cumulated advertising effort of driver ik in stage t (‘adstock’). tik ∈ T IKi

2.2 The multiproduct sales response function

In the MAB problem one can maximize different utility functions. One common approach is to maxi-
mize the advertising profitability [9]:

Advertising profitability = Profit × Salesg − Costg

where ‘Profit’ is the profit per unit, ‘Salesg’ corresponds to the sales due to advertising which is a
function of g, the number of GRPs, and ‘Costg’ is the cost of buying g GRPs. To model Salesg, sales
response models can be constructed [16]. More specifically, for each pair ti ∈ T I, the multiproduct
sales response function Sti accounts for Rtik, the sales on product i due to its own drivers, plus Ltijk,
the sales on product i due to the other product drivers (cross product sales):

Sti(x) =
∑
k∈Ki

Rtik(xtik) +
∑

jk∈IKj , j 6=i
Ltijk(xtjk), ti ∈ T I, (1)

where vector x accounts for (xtik)tik∈T IKi
.

In general, the single product sales response functionsRtik correspond to increasing concave functions
which model diminishing returns. According to [16], a typical choice, among others, is the so called
‘modified exponential’ function

Rtik(x) = αtik(1− e−βtikx), tik ∈ T IKi.

For more details see the case study in Section 4. On the other hand, the cross product sales response
functionsLtijk model the cross elasticities among the products due to relationships of complementarity
or substitution [10]. In the case of complementarity (positive elasticity), advertising on product j
increases sales of product i and this cross effect can be modeled by an increasing concave function.
On the contrary, in the case of substitution (negative elasticity), advertising on product j reduces sales
of product i (this cross effect is known as cannibalization [13]). The cannibalization effect can be
modeled by a decreasing convex function. If this function is strictly convex, the resulting multiproduct
sales response function Sti may not be concave. As is well known, concavity of the objective function
is a desirable property in a maximization problem since it guarantees global optimality (assuming a
convex feasible domain). On the other hand, the cross product effects are usually small relative to the
direct advertising effects modeled by Rtik, as in the case study presented in Section 4. Thus, to ensure
concavity and assuming that the cross effects are small, we will approximate the cross advertising
effects by linear functions:

Ltijk(x) = atijk x, tijk ∈ T IIKj , j 6= i. (2)
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To simplify the notation, we will assume that coefficients atijk with j = i exist and that they are
equal to 0. This will allow us to drop the condition j 6= i in equations that include atijk and
Ltijk(x) as for example equations (1) and (2).

2.3 The unconstrained case

In order to calculate the optimal advertising budget we use the previous multiproduct sales response
functions in the first MAB model. To distinguish this MAB version from other versions that will appear
in the paper, we name it MABPU , where we use P to indicate that it is based on the profit function
P (g) that we define below, and we use U to indicate that it is an unconstrained version. Problem
MABPU is defined as

max
g∈Rn

P (g),

where vector g = (gtik)tik∈T IKi
and n = T (

∑
i∈I Ki).

The profit function is defined as a function of g :

P (g) =
∑
ti∈T I

pti Sti(x(g))−
∑

tik∈T IKi

ctik gtik +
∑

tik∈T IKi

Vtik(x(g)),

where

Sti(x(g)) =
∑
k∈Ki

Rtik(xtik(g)) +
∑

jk∈IKj

Ltijk(xtjk(g)), ti ∈ T I, (3)

x(g) = (xtik(g))tik∈T IKi
, (4)

xtik(g) = δikxt−1,ik(g) + gtik, tik ∈ T IKi, (5)

x0ik = x̃0ik, ik ∈ IKi, (6)

V1ik(x(g)) = −c1ik δikx̃0ik, ik ∈ IKi, (7)

Vtik(x(g)) = 0, 1 < t < T, ik ∈ IKi, (8)

VT ik(x(g)) = cT+1,ik δik xT ik(g), ik ∈ IKi. (9)

(3) Accounts for the sales of product i in stage t due to advertising.

(4) Accounts for the addstock vector.

(5) Expresses the dynamic behavior of variable adstock for driver ik.

(6) Sets the initial level of the adstock variable for driver ik.

(7) Determines the accounting cost of the initial adstock level for driver ik.

(8) For notational convenience, we set these values to 0.

(9) Determines the accounting value of the final adstock level for driver ik.

Note that (5) is the discrete time version of the Nerlove-Arrow continuous time model for the adstock
variable [24]. Further details can be found in [19, 17, 30, 20].

In this paper any vector, say g, is assumed to be a column vector and its transpose will be indicated by
gT . Of course, this notation has nothing to do with RT , the Euclidean space of dimension T. Let us
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now see that each function xtik(g) is a linear function of g. First, we need some definitions. For each
driver jk ∈ IKj , we define the vector gjk as

gTjk = (g1jk, g2jk, . . . , gTjk),

which accounts for the investment on driver jk at each stage. Then, the allocation vector g can be
expressed as:

gT = (gtjk)tjk∈T IKj
= (gT11, g

T
12, . . . , g

T
1K1

, . . . , gTI1, g
T
I2, . . . , g

T
IKI

).

Furthermore, for each tjk ∈ T IKj , we define the vector

uTtjk = (δt−1
jk , δt−2

jk , . . . , δjk, 1, 0, . . . , 0) ∈ RT .

Note that, if we denote the τ -th component of vector utjk by utjk(τ), then

utjk(τ) = δt−τjk

for 1 ≤ τ ≤ t and utjk(τ) = 0 in the other cases.

Lemma 1 For any tjk ∈ T IKj , adstock function xtjk(g), can be expressed as an affine function of g
as follows:

xtjk(g) = vtjk + uTtjkgjk,

where vtjk = δtjk x̃0jk.

The proof of this Lemma and the proof of all the remaining theoretical results can be found in Appendix
A.

Proposition 1 If functionsRtik(x) are concave for all tik ∈ T IKi then, P (g) is concave and problem
MABPU is a concave maximization problem (concave objective function and convex decision domain).
Therefore, every local optimal solution is also global.

2.4 The constrained case

Companies often need to allocate advertising budgets combined with other investment limitations. In
this case we have to impose some constraints to problem MABPU . The constrained version of MABPU
is the following problem that we name MABPC :

max P (g)
s.t. g ∈ Dg

where Dg is the feasible set for vector g.

Proposition 2 If functions Rtik(x) are concave for all tik ∈ T IKi and if Dg is convex, then MABPC
is a concave maximization problem (concave utility function and convex decision domain). Therefore,
every local optimal solution is also global.
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A typical (convex) domain only considers variable bounds and linear constraints, that is,

Dg =
{
g ∈ Rn | Ag ≤ b, g ≤ g ≤ g

}
,

as for example

Dg =

g ∈ Rn |
∑

tik∈T IKi

ctik gtik ≤ b, g ≤ g ≤ g

 , (10)

where we have to allocate the total advertising budget b for all the drivers and along all the stages. This
is the situation analyzed in the case study of Section 4.3. Of course, many other kind of constraints
could be considered: the company could be interested in limiting the advertising budget within each
planning stage or it could be interested in imposing a threshold for the adstock variables at the end of
the planning horizon, or it could impose a budget for each driver, etc.

Note that for the constrained problem MABPC , it is not assured the existence of an optimum. Taking
into account that the objective function P (g) is concave, therefore continuous, by the Weierstrass
Theorem an optimal solution to problem MABPC will always exist, if the constraint setDg is compact
(closed and bounded) [27].

3 The optimal advertising budget

In this section we derive a simple procedure to compute the optimal advertising budget and its opti-
mal allocation. Allocation rules for the constrained Multistage Multiproduct Advertising Budgeting
(MAB) problem depend on the domain and therefore, in general, one cannot derive a closed formula.
In contrast, for the unconstrained case, one can derive the optimal allocation rule and, as a byproduct,
the optimal advertising budget. In formulations MABPU and MABPC we aggregated the information
by products and defined, at each stage, one multiproduct sales response function per product Sti(g).
Another possibility is to aggregate the information by drivers and define, at each stage, one sales re-
sponse function per driver, say Qtjk(g). This reformulation turns out to be useful to calculate the
optimal advertising allocation g∗ as we will see in this section. With this objective in mind, we rewrite
problem MABPU into the equivalent problem MAB

Q̃U
(see Lemma 2):

max
g∈Rn

Q̃(g) (11)

where we use the following functions

Q̃(g) =
∑

jk∈IKj

Q̂jk(g),

Q̂jk(g) =
∑
t∈T

Qtjk(g), jk ∈ IKj ,

Qtjk(g) = ptj Rtjk(xtjk(g)) +
∑
i∈I

pti Ltijk(xtjk(g))− ctjk gtjk + Vtjk(xtjk(g)), tjk ∈ T IKj ,

xtjk(g) = δikxt−1,jk(g) + gtjk, tjk ∈ T IKj ,
x0jk(g) = x̃0jk, jk ∈ IKj .

Analogously, we can rewrite problem MABPC into the equivalent problem MAB
Q̃C

:

max Q̃(g) (12)

s.t. g ∈ Dg.
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Lemma 2 Q̃(g) = P (g) for all g ∈ Rn.

It is clear that problem MAB
Q̃U

is decomposable by drivers (we have one subproblem per driver jk):

max
g∈Rn

Q̃(g) = max
g∈Rn

 ∑
jk∈IKj

Q̂jk(gjk)

 =
∑

jk∈IKj

(
max
gjk∈RT

Q̂jk(gjk)

)
.

For each driver jk we can define subproblem MAB
Q̂Ujk

as

max
gjk∈RT

Q̂jk(gjk) = max
gjk∈RT

∑
t∈T

Qtjk(gjk).

The remainder of the section will be devoted to solve MAB
Q̂Ujk

. Since all the subproblems have
the same structure, we will drop indexes jk in order to lighten the notation. For example, instead of
MAB

Q̂Ujk
we will write MAB

Q̂U
defined as

max
g∈RT

∑
t∈T

Qt(g).

Note that with some abuse of notation, in subproblem MAB
Q̂U

vector g has dimension T and in
problem MAB

Q̃U
, vector g has dimension n.

Let us see how we can write Qt in a more compact way. First, we define functions

rtjk(xtjk(g)) = ptjRtjk(xtjk(g)) +
∑
i∈I

ptiLtijk(xtjk(g)), tjk ∈ T IKj .

Second, we can drop the jk subindex and suppose that the reference product j is product 1:

rt(xt(g)) = pt1Rt(xt(g)) +
∑
i∈I

ptiLti(xt(g)), t ∈ T .

By combining this definition with the definition of Qt(g) we can write:

Qt(g) = rt(xt(g))− ct gt + Vt(xt(g)) t ∈ T ,

where xt(g) = vt + uTt g.

Assumption 1 We say that function R(x) satisfies Assumption 1 with constant C, if:

1. R(0) = 0 and R(x) > 0 for all x ∈ J =]0,+∞[.

2. limx→0, x>0R
′(x) > C.

3. limx→+∞R
′(x) < C.

4. For all x ∈ J, we have that R′′(x) exists and R′′(x) < 0 (therefore R(x) is strictly concave).

Given problem MAB, it is convenient to define the following auxiliary constants:

c̃t = ct − δT+1−t cT+1, t ∈ T ,
c̃T+1 = 0,

Kt =
1
pt1

(
c̃t − δc̃t+1 −

∑
i∈I

ptiati

)
, t ∈ T .
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Lemma 3 Given t ∈ T , if function Rt(x) satisfies Assumption 1 with constant Kt, then there exists a
unique x∗t > 0 such that

r′t(x
∗
t ) = c̃t − δ c̃t+1,

where rt(xt) = pt1Rt(xt) +
∑

i∈I ptiatixt.

Proposition 3 For a given component t0 of vector g ∈ RT we have that:

∂Q̂(g)
∂gt0

=
∑

t0≤t≤T
r′t(u

T
t g + vt) · δt−t0 − c̃t0 .

Proposition 4 Let us consider that functionsRt(x), with t ∈ T , fulfil Assumption 1 with constantKt.
Then

1. The system of non-linear equations on (x1, . . . , xT ) :∑
t0≤t≤T

r′t(xt) · δt−t0 − c̃t0 = 0, t0 ∈ T ,

has a unique solution vector that we denote by (x∗1, . . . , x
∗
T )T . Furthermore, x∗t > 0 for all

t ∈ T .

2. The linear system on g
uTt g + vt = x∗t , t ∈ T , (13)

has a unique solution vector that we denote by g∗.

Theorem 1 Let us consider subproblem MAB
Q̂U

where we assume that functionsRt(x) fulfil Assump-
tion 1 with constant Kt, for all t ∈ T . Then:

1. There exists a unique vector g∗ ∈ RT such that

∇Q̂(g∗) = 0.

Therefore g∗ is the unique global maximizer of Q̂(g).

2. Maximizer g∗ can be computed as follows.

(a) Calculate the scalars x∗1, . . . , x
∗
T, by solving the scalar equations

r′t(xt) = c̃t − δc̃t+1, t ∈ T .

(b) Compute
g∗t = x∗t − δ x∗t−1, t ∈ T .

where x∗0 = x̃0.

3. The optimal budget is b∗ =
∑

t∈T ctg
∗
t and its optimal allocation is given by g∗.

Note that Theorem 1 does not guarantee a positive g∗. In the case where some of the components of g∗

were non positive, we should impose sign constraints (g ≥ 0) to subproblem MAB
Q̂U

and solve the
corresponding constrained subproblem MAB

Q̂C
.
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4 Case Study

The objective of this section is to show by example the improvements that a multistage formulation
can bring to the single stage formulation of the multiproduct advertising budgeting problem. We try to
answer the following questions: a) Which is the optimal multiproduct advertising budget for the whole
planning horizon? b) Given an advertising budget (optimal or not), how can we optimally allocate it
along the planning horizon? c) Is it important to consider multistage models? or on the contrary, is it
enough to consider single stage models?

The Multistage Multiproduct Advertising Budgeting (MAB) instances that we present correspond to
problems MAB

Q̃U
and MAB

Q̃C
(equations (11) and (12) respectively). These instances were derived

from a real-life case addressed at the consulting company Bayes Forecast1, to plan the advertising
campaign for a leading fast moving consumer goods company. The instance we present here, considers
a twelve months planning horizon (T = 12), two products that we denoted by P1 and P2 (I = 2) and
two sales drivers per product (K1 = K2 = 2). For each product, the first driver corresponds to TV
advertising and the second driver corresponds to in-store promotions. These parameters as well as the
profit per unit sold are summarized in Table 11 of Appendix B (note that profits are constant along all
the stages). The values of the advertising retention rate δik and the values of the initial adstock x̃0ik,
are in Table 4 and Table 5, respectively.

4.1 The ‘modified exponential’ response function

In our case study we use the single product sales response function denominated ‘modified exponen-
tial’ [16], where sales are modeled as a function of the advertising effort x as follows

Rt(x) = αt(1− e−βtx), t ∈ T .

Note that functions Rtik(x) were introduced in Section 2.2, and in this section we drop indexes ik for
simplicity of exposition. The positive parameter αt corresponds to the saturation level. This means
that no matter how much marketing effort is expended, the sales due to advertising will not be higher
than αt (Table 6). The positive parameter βt regulates the diminishing return to scale (Table 7). On the
other hand, the cross product sales effects between P1 and P2 are due to substitution, i.e., advertising
on, say P1, will increase P1 sales but will reduce P2 sales and viceversa. These effects are known
as cannibalization [13]. In this case study, the cannibalization effects is small relative to the direct
advertising effects modeled by Rtik(x). Thus, as mentioned in Section 2.2, to ensure concavity the
cannibalization effects can be approximated by linear functions Lti(x) = atix. Under cannibalization,
the cross product effect parameters ati are negative (Tables 8 and 9).

In Figure 1 we can see a unidimensional profit function based on the modified exponential sales re-
sponse function for t = 1 and x̃0 = 0 (in this case x1 = g1):

Q1(x) = p11 R1(x) + p12L12(x)− c1x
= p11 α1(1− e−β1x) + p12a12x− c1x

with p11 = 1.75, p12 = 1.40, c1 = 480, α1 = 345, 000, β1 = 0.010 and a12 = −0.0001.

Next lemma shows that under cannibalization and some mild assumptions, the modified exponential
response function fulfils Assumption 1. This implies that the optimal allocation rule stated in Theorem
1 can be applied for subproblem MAB

Q̂U
based on the modified exponential model.

1Bayes Forecast S.L., Madrid (Spain), www.bayesforecast.com
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Figure 1: Unidimensional profit function Q1(x) based on the
‘modified exponential’ sales response function.

Lemma 4 Let us assume that c̃t − δ c̃t+1 > 0, that αtβt > Kt for all t ∈ T and that ati < 0 for all
ti ∈ T I. Then, for all t ∈ T , function

Rt(x) = αt(1− e−βtx)

with αt, βt > 0, fulfils Assumption 1 with constant Kt.

4.2 Determining the optimal budget

When solving the MAB problem one can compute the optimal budget considering all the stages simul-
taneously (multistage optimization). Alternatively, one can compute the optimal budget stage-by-stage
(we call it stage-by-stage optimization). This corresponds to solving a sequence of 12 problems MAB
with T = 1.As is well known, only the multistage optimization gives an optimal solution for the MAB
problem. The stage-by-stage optimization usually gives a solution which is good but suboptimal. One
of the main objectives of our case study is to show by example that relevant losses can be incurred
by implementing the stage-by-stage optimal allocation. In Table 10 we display the cost of one GRP
depending on the driver type. Note that these costs define alternating low and high price periods of
two months. This cost structure will allow us to assess the ability of the two optimization approaches
to cope with dynamic GRP prices.

4.2.1 Multistage approach

Proposition 5 Let us consider subproblem MAB
Q̂U

based on the modified exponential sales response
function, i.e.,

Rt(x) = αt(1− e−βtx), t ∈ T .

Let us assume that Rt(x) fulfils Assumption 1 with constant Kt, for all t ∈ T . Then, the optimal
multistage budget allocation g∗ can be computed as follows. For each t ∈ T compute:

g∗t = x∗t − δ x∗t−1,

x∗t =
1
βt

ln
(

pt1αtβt
c̃t − δ c̃t+1 −

∑
i∈I ptiati

)
,

where x∗0 = x̃0.

11



Table 1: Optimal budget (results in euros): The multistage ap-
proach gives the MAB optimal budget (3,818,334 euros) which
increases by 5.52% (1,218,625 euros) the profit given by the
stage-by-stage approach.

Stage-by-stage Multistage Variation
Budget 3,929,416 3,818,334 -2.83%
Cannibalization -401,809 -399,039 -0.69%
Profit 22,058,084 23,276,709 5.52%

By using Proposition 5 we computed the optimal multistage budget (Table 1). As a by-product of the
optimal budget, we obtained the optimal budget allocation. The optimal budget allocation correspond-
ing to driver 1 of P1, can be seen in Figure 2 (solid line). In the next section we will compare this
approach with the stage-by-stage approach.

4.2.2 Stage-by-stage approach

Proposition 6 Let us consider subproblem MAB
Q̂U

based on the modified exponential sales response
function, i.e.,

Rt(x) = αt(1− e−βtx), t ∈ T .

Let us assume that Rt(x) fulfils Assumption 1 with constant

K ′t =
1
pt1

(
ct − δct+1 −

∑
i∈I

ptiati

)

for all t ∈ T . Then, the optimal stage-by-stage budget allocation g∗ can be computed as follows. For
each t ∈ T compute:

g∗t = x∗t − δ x∗t−1,

x∗t =
1
βt

ln
(

pt1αtβt
ct − δ ct+1 −

∑
i∈I ptiati

)
,

where x∗0 = x̃0.

Note that in the multistage case we used the same formulas but with c̃t instead of ct.

By using Proposition 6 we computed the ‘optimal’ stage-by-stage budget. In Table 1 we compare the
results obtained by the two approaches: Stage-by-stage versus multistage. This table shows that the
MAB optimal budget for the 12 months is 3,818,334 euros which produces a profit 5,52% (1,218,625
euros) higher than the suboptimal budget proposed by the stage-by-stage approach.

The multistage approach gives a better profit than the stage-by-stage approach, as one would expect.
Of course, the multistage improvement observed in this case study (5,52%) does not guarantee this
level of improvement for all the MAB instances. It only shows that the multistage approach may
obtain significatively better results than the single stage approach. The message of this case study is
that it is worthy to use the multistage approach.

Although a thorough sensitivity analysis is out of the scope of this article, in Table 2 we show the
results of a very basic sensitivity analysis. Given that the parameters are grouped in vectors, e.g.

12



Table 2: Sensitivity analysis (results in %): In column ‘Variation
–25%’ we have the optimal profit improvement of the multistage
approach compared to the stage-by-stage approach when we re-
duced by 25% de reference values of the corresponding vector
parameter. Analogously for column ‘Variation +25%’.

Vector parameter Symbol Variation –25% Variation +25%
Profit p 5,96 5,27
Cost c 5,21 5,85
Saturation α 5,91 5,29
Diminishing return to scale β 5,91 5,29
Cannibalization a 5,55 5,50
Retention rate δ 5,38 -

α = (αtik)tik∈T IKi
, we considered appropriate to simultaneously perturb all the components of a

vector parameter by the same percentage, either -25% or +25% (one vector parameter each time). As
reference values we took the parameter values listed in Appendix B (the ones used to obtain the 5,52%
improvement). In column ‘Variation –25%’ we have the optimal profit improvement (in %) of the
multistage approach compared to the stage-by-stage approach, when we reduced by 25% de reference
values of the corresponding vector parameter. Analogously for column ‘Variation +25%’. The entry
for the bottom right corner could not be calculated since in this case functionsRt(x) do not fulfill
condition 3 of Assumption 1 with constantsKt andK ′t for some t ∈ T and therefore Propositions
5 and 6 could not be applied.

Finally, as previously mentioned, the advertising investment corresponding to driver 1 of P1 can be
seen in Figure 2. The optimal advertising allocation proposed by the multistage approach (solid lines)
is better adapted to price changes, since it allocates more GRPs at low price periods and less GRPs at
high price periods.

4.3 Determining the optimal allocation for a given budget

To compute the optimal budget one assumes that there is no limit on the available budget, as we did
in the previous section (unconstrained optimization case). However, very often companies need to
allocate a reduced advertising budget (constrained optimization case). For example, if we were limited
to 50% of the optimal budget computed in the previous section, we should solve problem MAB

Q̃C
with b = 1, 909, 167 euros, g = 0 GRPs and g =∞ GRPs in (10). In Table 3 we compare the results
obtained by the two approaches: unconstrained versus constrained. This table shows that by reducing
50% the optimal budget for the 12 months, we reduce by 6.18% (1,437,892 euros) the optimal profit.
In Figure 3 we compare the budget allocation corresponding to driver 1 of P1 obtained by the two
approaches. We observe that the reduced budget allocation proposes greater relative reductions in
advertising investment at high price stages.

The computations have been conducted on a laptop under Windows XP, with a processor Intel Core
Duo 2.40GHz and with 3.48 GB of RAM. Programs have been written in Matlab (R2008b) and prob-
lem MAB

Q̂C
(constrained concave maximization problem) has been solved by function fmincon

from the Matlab Optimization Toolbox (V4.1) with default parameters. fmincon uses a (sequential
quadratic programming) SQP method based on the (Broyden-Fletcher-Goldfarb-Shanno) BFGS for-
mula [14, 25]. In our case the optimal solution of our MAB

Q̂C
instance (12 stages, 2 products and 2

drivers per product) has been obtained after 42 SQP iterations (1.4 seconds).
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Figure 2: Optimal budget allocation g∗t for driver 1 of product 1
(unconstrained case): The multistage approach is better adapted
to price changes than the stage-by-stage approach. The former
allocates more GRPs in low price periods (months 1-2, 5-6 and
9-10) and less GRPs in high price periods (months 3-4, 7-8 and
11-12).

Table 3: Reduction of the optimal budget (results in euros): By
reducing 50% the optimal budget we reduce 6% the profit.

Optimal budget Reduced budget Variation
Budget 3,818,334 1,909,167 -50.00%
Cannibalization -399,039 -231,532 -41.98%
Profit 23,276,709 21,838,817 -6.18%

Figure 3: Optimal budget allocation g∗t for driver 1 of product 1
(optimal budget and reduced budget): The optimal allocation of
the reduced budget is attained by allocating less GRPs, especially
in high price periods (months 3-4, 7-8 and 11-12).
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5 Concluding remarks

The main objective of this paper is to propose and analyze an effective formulation for the multistage
multiproduct advertising budgeting (MAB) problem. This model is intended to optimize the advertis-
ing investment for several products, by considering ‘cross product effects’, different drivers and the
whole planning horizon (multistage). As far as we know, a multistage multiproduct version of the
advertising budgeting problem has not been considered in literature.

From a theoretical point of view, firstly, we have shown that the MAB model that we propose corre-
sponds to a maximization concave problem (constrained and unconstrained version). Therefore this
model is numerically tractable and produces global optimal solutions. Secondly, we have reduced the
solution of the unconstrained MAB problem to a set of scalar equations. For the typical sales response
functions used in marketing, these equations are easy to solve and give closed formulas to calculate
the optimal advertising budget and its optimal allocation.

From a practical point of view, we have seen that the multistage model, in comparison with the single
stage model, allows for a better allocation of advertising along the planning horizon. We have solved
a MAB instance derived from a realistic case from the advertising industry. Firstly, we have compared
the full MAB model to its single stage version. We have observed that the (optimal) budget proposed
by the multistage model has increased by 5.52% the profit of the (suboptimal) budget proposed by
an equivalent sequence of single stage models. According to the basic sensitivity analysis we have
performed, it seems that 5.52% represents fairly well the improvement that one can expect from the
multistage approach applied to the type of instance we have analyzed in the case study. Secondly,
we have shown by example that the constrained MAB model can be used to allocate more restrictive
budgets combined with other investing constraints. For example, we have observed that, by reducing
50% the optimal budget, the advertising profit drops 6.18%.

We would like to point out some limitations of the MAB model presented. The first limitation is that
the model does not takes the product price as a sales driver, that is, as a decision variable (prices are
input data in the current formulation). The second limitation is that the model is deterministic. That is,
it does not take into account the uncertainty of some parameters. The third limitation is that the model
does not takes into account the competitive aspects of the problem. As a matter for further research,
the authors are planning to improve the MAB model regarding these three aspects.
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6 Appendix A: Proofs

Lemma 1

Straightforward.

Proposition 1
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This proof is also straightforward since the composition of a concave function with an affine function
is concave.

Proposition 2

Analogous to the proof of Proposition 1.

Lemma 2

Straightforward.

Lemma 3

First, if Rt(x) satisfies Assumption 1 with constant Kt and by the previous Lemma, we have

lim
x→0, x>0

r′t(x) = lim
x→0, x>0

(
pt1R

′
t(x) +

∑
i∈I

ptiati

)
> pt1Kt +

∑
i∈I

ptiati

= c̃t − δc̃t+1.

and

lim
x→+∞

r′t(x) = lim
x→+∞

(
pt1R

′
t(x) +

∑
i∈I

ptiati

)
< pt1Kt +

∑
i∈I

ptiati

= c̃t − δc̃t+1.

Second, since r′′t (x) = pt1R
′′
t (x) < 0, we have that r′t(x) is strictly decreasing for all x ∈ J . Third,

since r′′t (x) exists on J , we have that r′t(x) is a continuous function. Putting together these three facts,
we have that the value c̃t − δc̃t+1 is attained exactly once by r′t(x) on J. Therefore, there exists a
unique x∗t > 0 such that

r′t(x
∗
t ) = c̃t − δ c̃t+1.

Proposition 3

It is not difficult to see that ∑
t0≤t≤T

∂Vt(g)
∂gt0

= δT+1−t0 cT+1.

Let us prove the statement of this Proposition by using the previous equality. For any component t0 of
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vector g we have that

∂Q̂(g)
∂gt0

=
∑

1≤t≤t0−1

∂Qt(g)
∂gt0

+
∑

t0≤t≤T

∂Qt(g)
∂gt0

= 0 +
∑

t0≤t≤T

∂

∂gt0

(
rt(vt + uTt g)− ct gt + Vt(g)

)
=

∑
t0≤t≤T

∂

∂gt0
rt(vt + uTt g)−

∑
t0≤t≤T

∂

∂gt0
ct gt +

∑
t0≤t≤T

∂Vt(g)
∂gt0

=

 ∑
t0≤t≤T

r′t(vt + uTt g) · δt−t0
− c̃t0

where c̃t0 = ct0 − δT+1−t0 cT+1.

Proposition 4

• Statement 1: We will proceed by backward induction, i.e., we will start by studying the non-linear
equation at stage T, then at stage T − 1, etc.

1. For the last stage T, that is t0 = T, we have∑
T≥t≥T

r′t(xt) · δt−T − c̃T = 0

r′T (xT ) · δT−T − c̃T = 0
r′T (xT ) = c̃T − δc̃T+1

where we have used that c̃T+1 = 0.

By Lemma 3 there exists a unique scalar x∗T > 0 such that r′T (x∗T ) = c̃T − δc̃T+1 (in this
particular case r′T (x∗T ) = c̃T ).

2. For stage T − 1, that is t0 = T − 1, we have∑
T≥t≥T−1

r′t(xt) · δt−(T−1) − c̃T−1 = 0

r′T (xT ) · δT−(T−1) + r′T−1(xT−1) · δT−1−(T−1) − c̃T−1 = 0
r′T (x∗T ) · δ + r′T−1(xT−1)− c̃T−1 = 0

r′T−1(xT−1)− c̃T−1 + δc̃T = 0
r′T−1(xT−1) = c̃T−1 − δc̃T .

By Lemma 3 there exists a unique scalar x∗T−1 > 0, such that r′T−1(x
∗
T−1) = c̃T−1 − δc̃T .

3. By induction hypothesis, let us suppose that, for any τ ≥ 1 and any t such that T > t > T − τ,
there exists a unique x∗t such that

r′t(x
∗
t ) = c̃t − δc̃t+1.
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Let us prove that the statement is also true for t0 = T − τ. For stage T − τ, that is t0 = T − τ,
we have ∑

T≥t≥T−τ
r′t(xt) · δt−(T−τ) − c̃T−τ = 0

∑
T≥t>T−τ

r′t(x
∗
t ) · δt−(T−τ) + r′T−τ (xT−τ )− c̃T−τ = 0

c̃T · δτ + (c̃T−1 − δc̃T ) · δτ−1 + . . .+ (c̃T−τ+1 − δc̃T−τ+2) · δ + r′T−τ (xT−τ )− c̃T−τ = 0
c̃T−τ+1δ + r′T−τ (xT−τ )− c̃T−τ = 0,

which implies
r′T−τ (xT−τ ) = c̃T−τ − δc̃T−τ+1.

By Lemma 3 there exists a unique scalar x∗T−τ > 0, such that r′T−τ (x
∗
T−τ ) = c̃T−τ − c̃T−τ+1δ.

• Statement 2: The system of linear equations (13) can be stated as Bg = d where

B =


1
δ 1
δ2 δ 1
...

...
. . .

δT−1 δT−2 . . . δ 1

 (14)

dT = (x∗1 − v1, . . . , x∗T − vT ). (15)

Given that detB 6= 0, the linear system has a unique solution, say g∗.

Theorem 1

• Statement 1: By definition

∇Q̂(g) =

(
∂Q̂(g)
∂gt

)
t∈T

.

By Proposition 3, equations ∂Q̂(g)
∂gt0

= 0 with t0 ∈ T , can be written as:∑
t0≤t≤T

r′t(xt) · δt−t0 − c̃t0 = 0, t0 ∈ T , (16)

where

xt = uTt gt + vt, t ∈ T ,
uTt = (δt−1, δt−2, . . . , δ, 1, 0, . . . , 0) ∈ RT , t ∈ T ,
vt = δtx̃0, t ∈ T .

By Proposition 4, there exists a unique positive vector (x∗1, . . . , x
∗
T )T solution of the system of non-

linear equations (16). Also by Proposition 4, there exists a unique vector g∗ ∈ RT that solves the
following system of T linear equations

uTt g + vt = x∗t , t ∈ T .

Therefore, we have proved that g∗ is the unique solution of

∂Q̂(g)
∂gt

= 0, t ∈ T .
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i.e., there exists a unique vector g∗ such that

∇Q̂(g∗) = 0.

Since Q̂(g) is concave, it follows that g∗ is the unique global maximizer of Q̂(g).

• Statement 2: Part (a) directly follows from the proof of Proposition 4.

Part (b) can be proved by taking into account the triangular structure of B in the system of linear
equations

Bg = d,

where B and d are defined by equations (14) and (15), respectively. In this case, we can write

g∗1 = x∗1 − δ x̃0,

g∗t = x∗t − δt x̃0 −
t−1∑
τ=1

δt−τ g∗τ , t ≥ 2

These expressions that can be written in a recursive way:

g∗t = x∗t − δ x∗t−1, t ∈ T ,

where x∗0 = x̃0.

• Statement 3: Trivial.

Lemma 4

For all t ∈ T the following statements hold:

1. αt(1− e−βt0) = 0 and αt(1− e−βtx) > 0 for all x ∈ J =]0,+∞[.

2. Since R′t(x) = αtβte
−βtx, we have that limx→0, x>0R

′
t(x) = αtβt > Kt for all t ∈ T .

Therefore limx→0, x>0R
′
t(x) > Kt.

3. On the one hand, considering that by hypothesis c̃t − δ c̃t+1 > 0 and ati < 0, we have that

Kt =
1
pt1

(
c̃t − δc̃t+1 −

∑
i∈I

ptiati

)
> 0.

On the other hand, we have that limx→+∞R
′
t(x) = 0. Therefore limx→+∞R

′
t(x) < Kt.

4. R′′t (x) = −αtβ2
t e
−βtx exists and R′′t (x) < 0 for all x > 0 (therefore Rt(x) is strictly concave).

Proposition 5

According to Theorem 1, the optimal allocation g∗ can be computed as follows: For each t ∈ T ,
calculate the scalar x∗t by solving the scalar equation

r′t(xt) = c̃t − δ c̃t+1,
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which amounts to

pt1R
′
t(xt) +

∑
i∈I

ptiati = c̃t − δ c̃t+1,

pt1αtβte
−βtxt +

∑
i∈I

ptiati = c̃t − δ c̃t+1,

from where

x∗t =
1
βt

ln
(

pt1αtβt
c̃t − δ c̃t+1 −

∑
i∈I ptiati

)
, t ≤ T.

The second statement was proved in Theorem 1.

Proposition 6

Straightforward.

7 Appendix B: Data for the case study

Table 4: Values for δik .
i \ k 1 2

1 0.660 0.552
2 0.588 0.552

Table 5: Values of x̃0ik (in GRPs).
i \ k 1 2

1 300 300
2 50 50
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Table 6: Values of αtik (in units of product i).

t αt11 αt12 αt21 αt22

1 345,000 270,000 86,400 105,600
2 389,850 305,100 83,700 102,300
3 493,350 386,100 113,400 138,600
4 510,600 399,600 137,700 168,300
5 731,400 572,400 199,800 244,200
6 838,350 656,100 251,100 306,900
7 897,000 702,000 278,100 339,900
8 969,450 758,700 259,200 316,800
9 734,850 575,100 224,100 273,900
10 386,400 302,400 191,700 234,300
11 427,800 334,800 189,000 231,000
12 407,100 318,600 218,700 267,300

Table 7: Values of βtik do not depend on t (in GRPs−1).

i \ k 1 2
1 0.010 0.010
2 0.005 0.005

Table 8: Values of atij1 (in units of product i per unit of driver j1).

i \ j 1 2
1 0 -0.00010
2 -0.00010 0

Table 9: Values of atij2 (in units of product i per unit of driver j2).

i \ j 1 2
1 0 -0.00015
2 -0.00015 0
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Table 10: Values of ctik (in euros per GRP).

t ct11 ct12 ct21 ct22

1 480 528 432 475
2 480 528 432 475
3 640 704 576 634
4 640 704 576 634
5 480 528 432 475
6 480 528 432 475
7 640 704 576 634
8 640 704 576 634
9 480 528 432 475
10 480 528 432 475
11 640 704 576 634
12 640 704 576 634

Table 11: Other parameters.

Parameter Value Units
T 12 month
I 2 produt
K1 2 driver
K2 2 driver
pt1 1.75 euro/unit of product 1
pt2 1.40 euro/unit of product 2
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