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Abstract

We show how the performance of general purpose Mixed Integer Programming
(MIP) solvers, can be enhanced by using the Semi-Lagrangian Relaxation (SLR)
method. To illustrate this procedure we perform computational experiments on
large-scale instances of the Uncapacitated Facility Location (UFL) problems with
unknownoptimal values. CPLEX solves 3 out of the 36 instances. By combining
CPLEX with SLR, we manage to solve 18 out of the 36 instances and improve the
best known lower bound for the other instances. The key point has been that, on ave-
rage, the SLR approach, has reduced by more than 90% the total number of relevant
UFL variables.

Keywords: Lagrangian relaxation, mixed integer programming, uncapacitated
facility location (UFL) problem.

1 Introduction

Implementing an exact method for large scale MIP problems usually requires devising efficient
cuts, efficient branching strategies, etc. to exploit the special structure of the problem at hand.
In this paper we explore another possibility: to solve large scale MIP problems by combining
the SLR approach with a general MIP solver. The idea is to take advantage of the steadily
increasing power of general MIP codes. The aim of combining a general MIP solver with SLR
is not to obtain the fastest procedure to solve a problem, but to enhance the performance of
the MIP solver at low programming cost. Here we use the UFL problem, as a benchmark to
illustrate the SLR approach. In order to obtain the best performance, one should use Erlenkotter
type algorithms [14], which are especially designed for the UFL problem.

The Semi-Lagrangian Relaxation (SLR) method was introduced in [5] to solve the p-median
problem. In order to solve a combinatorial problem, the SLR method has two main advantages
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compared to the Lagrangian relaxation (LR): The SLR method closes the duality gap and gives
an optimal integer solution as a byproduct. The disadvantage of the SLR method is that the
relaxed problem is more difficult to solve than in the case of the LR.

SLR applies to problems with equality constraints. Like Lagrangian Relaxation (LR), the
equality constraints are relaxed, but the definition of the semi-Lagrangian dual problem incor-
porates those constraints under the weaker form of inequalities. On combinatorial problems with
positive coefficients, it has the strong property of achieving a zero duality gap. The method has
been used with success to solve large instances of the p-median problem. In this paper we revisit
the method and apply it to the celebrated Uncapacitated Facility Location (UFL) problem. We
perform computational experiments on two main collections of UFL problems with unknown
optimal values. CPLEX solves 3 out of the 36 instances. On one collection, we manage to solve
to optimality 16 out of the 18 problems. On the second collection we solve 2 out of 18 instances.
Nevertheless, we are able to improve the Lagrangian lower bound in this collection and thereby
confirm that the Hybrid Multistart heuristic of [32] provides near optimal solutions (over99%
optimal in most cases).

The UFL problem (also called the simple plant location problem) is a basic but important
problem in location science [31]. See [29] for a survey. [27] and [24] improve the famous dual-
based procedure of Donald Erlenkotter [14], where the condensed dual of the LP relaxation for
the UFL problem is heuristically maximized by the coordinate ascent method. This procedure
is followed by a Branch-and-Bound if necessary. [11] propose an projection method to improve
the coordinate ascent method in order to compute an exact optimum of the condensed dual
problem. [15] adapt Erlenkotter’s method to effectively solve the so called two-echelon location
problem, which generalizes the UFL problem.

On the other hand, after 1990 contributions to the UFL problem mainly dealt with heuristic
methods. Some of the most successful methods are: Tabu search in [33, 16], a combination of
Tabu search, Genetic Algorithm and Greedy Randomized Adaptative Search in [26] and Hybrid
Multistart heuristic in [32]. Other contributions have investigated enhanced versions of the UFL
problem, as the two-stage UFL [28] or have investigated new computational techniques applied
to the UFL problem, as parallel interior point methods [12].

Lagrangian relaxation [20] has also been used to solve the UFL problem, though with less
success than the LP dual-based procedures. For example [19] proposes to strengthen the Lagran-
gian relaxation (equivalent to the LP relaxation) by using Benders inequalities. From a more
theoretical point of view, [30] studies the duality gap of the UFL problem. A complete study of
valid inequalities, facets and lifting theorems for the UFL problem can be found in [8, 9, 10].

This paper is organized as follows: In Section 2 we review the main properties of the SLR
and discuss two algorithms to solve its associated dual problem: Proximal-ACCPM and the dual
ascent algorithm. In Section 3, we apply the SLR to the UFL problem, develop some related
theoretical properties and detail a specialization of the dual ascent algorithm for the UFL case.
Section 4 reports our empirical study. Our conclusions are given in a last section.

2 Semi-Lagrangian relaxation

The concept of semi-Lagrangian relaxation was introduced in [5]. In this section, we summarize
the main results obtained in that paper and simplify the proofs given there.
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Consider the problem, to be named “primal” henceforth.

z∗ = min
x

cT x

s.t. Ax = b, (1a)

x ∈ S ⊂ X ∩ Nn. (1b)

Assumption 1 The components ofA ∈ Rm × Rn, b ∈ Rm andc ∈ Rn are nonnegative.

Assumption 2 X is a polyhedral set,0 ∈ S and (1) is feasible.

Assumptions 1 and 2 together imply that (1) has an optimal solution.

The semi-Lagrangian relaxation consists in adding the inequality constraintAx ≤ b and
relaxingAx = b only. We thus obtain the dual problem

max
u∈Rm

L(u), (2)

whereL(u) is the semi-Lagrangian dual function defined as

L(u) = min
x

cT x + uT (b−Ax) (3a)

s.t. Ax ≤ b, (3b)

x ∈ S. (3c)

Note that with our assumptions the feasible set of (3) is bounded. We also have thatx = 0 is
feasible to (3); hence (3) has an optimal solution.L(u) is well-defined, but the minimizer in (3)
is not necessarily unique. With some abuse of notation, we write

x(u) = arg min
x
{cT x + uT (b−Ax) | Ax ≤ b, x ∈ S} (4)

to denote one such minimizer. With this notation we may writeL(u) = (c−AT u)T x(u)+bT u.
We denoteU∗ the set of optimal solutions of problem (2). Finally, given two setsA andB, its
addition corresponds toA + B = {a + b : a ∈ A andb ∈ B}.

Theorem 1 The following statements hold [5].

1. L(u) is concave andb−Ax(u) is a subgradient atu.

2. L(u) is monotone andL(u′) ≥ L(u) if u′ ≥ u, with strict inequality ifu′ > u and
u′ 6∈ U∗.

3. U∗ + Rm
+ = U∗; thusU∗ is an unbounded (convex) set.

4. If x(u) is such thatAx(u) = b, thenu ∈ U∗ andx(u) is optimal for problem (1).

5. Conversely, ifu ∈ int(U∗), then any minimizerx(u) is optimal for problem (1).

6. The SLR closes the duality gap for problem (1).
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Now, we simplify the proof given in [5].

Proof: From the definition of the SLR function as a pointwise minimum, the inequality

L(u′) ≤ cT x(u) + (u′)T (b−Ax(u))
= L(u) + (b−Ax(u))T (u′ − u), (5)

holds for any pairu, u′. This shows thatL(u) is concave and that(b−Ax(u)) is a subgradient
atu. This proves statement 1.

To prove statement 2, we note, in view ofb−Ax(u′) ≥ 0 andu′ ≥ u, that we have the chain
of inequalities

L(u′) = cT x(u′) + (b−Ax(u′))T u′,

= cT x(u′) + (b−Ax(u′))T u + (b−Ax(u′))T (u′ − u),
≥ cT x(u′) + (b−Ax(u′))T u,

≥ cT x(u) + (b−Ax(u))T u = L(u).

This proves the first part of the third statement. Ifu′ /∈ U∗, then0 /∈ ∂L(u′), the subdif-
ferential ofL at u′ ([22]), and one has(b − Ax(u′))j > 0 for somej. Thus,u < u′ implies
(b−Ax(u′))T (u′ − u) > 0. Hence,L(u′) > L(u).

The third statement is an immediate consequence of the monotone property ofL(u). Furt-
hermore,U∗ is convex since it is the optimal set of a concave function [22].

To prove the fourth statement, we note thatAx(u) = b implies0 ∈ ∂L(u), a necessary and
sufficient condition of optimality for problem (2). Henceu ∈ U∗. Finally, sincex(u) is feasible
to (1) and optimal for the relaxation (3) of problem (1), it is also optimal for (1).

To prove the fifth statement, assume nowu ∈ int(U∗). In this case there existsu′ ∈ U∗ such
thatu′ < u; thus(b − Ax(u))T (u − u′) ≥ 0, with strict inequality ifb − Ax(u) 6= 0. In view
of (5),

0 ≥ (b−Ax(u))T (u′ − u) ≥ L(u′)− L(u).

ThusAx(u) = b, andx(u) is optimal to (1). It follows that the original problem (1) and the
semi-Lagrangian dual problem (2) have the same optimal value (the last statement).

To close this Section we present the two methods we use to solve the SLR dual problem (2):
The proximal analytic center cutting plane method (proximal-ACCPM) and dual ascent method.
The first one consists in choosing a theoretically and practically efficient general method for sol-
ving the semi-Lagrangian dual problem. As for the p-median problem [5] we select the proximal
analytic center cutting plane method (proximal-ACCPM). This ensures a small number of itera-
tions, and seems to keep the oracle subproblem simple enough during the solution process. The
other method is a variant of the dual ascent method (e.g., [6]) based on finite increases of the
components ofu. In fact, the dual ascent algorithm we use is in essence the dual multi-ascent
procedure used in [27] to solve the Erlenkotter’s ‘condensed’ dual of the UFL problem [14]. In
the case of LR, the dual multi-ascent method does not necessarily converge. In the case of the
SLR we prove finite convergence.
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2.1 The proximal analytic center cutting plane method

FunctionL(u) in problem (2) is by construction, concave and nonsmooth (it is implicitly defined
as the pointwise minimum of linear functions inu). Extensive numerical experience shows that
Proximal-ACCPM, is an efficient tool for solving (2). See, for instance, [18] and references
therein included; see also [5] for experiments with thep-median problem.

In the cutting plane procedure, we consider a sequence of points{uk}k∈K in the domain of
L(u). We consider the linear approximation toL(u) atuk, given by

Lk(u) = L(uk) + sk · (u− uk)

and have
L(u) ≤ Lk(u)

for all u.

The pointuk is referred to as aquery point, and the procedure to compute the objective
value and subgradient at a query point is called anoracle. Furthermore, the hyperplane that
approximates the objective functionL(u) at a feasible query point and defined by the equation
z = Lk(u), is referred to as anoptimality cut.

A lower bound to the maximum value ofL(u) is provided by:

θl = max
k
L(uk).

Thelocalization set is defined as

LK = {(u, z) ∈ Rn+1 | u ∈ Rn, z ≤ Lk(u) ∀k ≤ K, z ≥ θl}, (6)

whereK is the current iteration number. The basic iteration of a cutting plane method can be
summarized as follows:

1. Select(u, z) in the localization setLK .

2. Call the oracle atu. The oracle returns one or several
optimality cuts and a new lower boundL(u).

3. Update the bounds:

(a) θl ← max{L(u), θl}.
(b) Compute an upper boundθu to the optimum of problem (2).

4. Update the lower boundθl and add the new cuts in the
definition of the localization set (6).

These steps are repeated until a point is found such thatθu − θl falls below a prescribed
optimality tolerance. The first step in the above algorithm sketch is not completely defined.
Actually, cutting plane methods essentially differ in the way one chooses the query point. For
instance, the intuitive choice of the Kelley point(u, z) that maximizesz in the localization set
[25] may prove disastrous, because it over-emphasizes the global approximation property of
the localization set. Safer methods, as for example bundle methods [21] or Proximal-ACCPM
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[17, 18, 13, 2], introduce a regularizing scheme to avoid selecting points too “far away” from the
best recorded point. In this paper we use Proximal-ACCPM (Proximal Analytic Center Cutting
Plane Method) which selects theproximal analytic centerof the localization set. Formally,
the proximal analytic center is the point(u, z) that minimizes the logarithmic barrier function
of the localization set plus a quadratic proximal term which ensures the existence of a unique
minimizer. This point is relatively easy to compute using the standard artillery of Interior Point
Methods. Furthermore, Proximal-ACCPM is robust, efficient and particularly useful when the
oracle is computationally costly —as is the case in this application.

2.2 A dual ascent method

We state the algorithm first and then prove finite convergence. This algorithm, at each iteration,
increases some or all of the coordinates of the dual iterateuk, by at least∆ > 0.

Algorithm 1: Dual ascent algorithm (basic iteration).

1. Solve the oracle: Compute

xk = arg min
x
{cT x + (uk)T (b−Ax) | Ax ≤ b, x ∈ S},

whereuk is the current dual iterate.

2. Stopping criterion: Ifsk := b−Axk = 0, stop.
(xk, uk) is an optimal primal-dual point.

3. Update the dual iterate: Forj = 1, . . . , n, set

uk+1
j =

{
uk

j + δk
j if sk

j > 0,

uk
j otherwise,

whereδk
j ≥ ∆.

We now prove finite convergence of the above algorithm.

Theorem 2 The following statements hold.

1. Algorithm 1 is a dual ascent method when applied to solve the SLR dual problem: for
any two consecutive iteratesuk anduk+1 we haveL(uk+1) > L(uk).

2. Let us suppose thatu0 ≥ 0 and thatU∗ 6= ∅. Algorithm 1 converges to an optimal
dual pointu ∈ U∗ after finitely many iterations.

Proof: Let us prove statement 1 first. The updating procedure of Algorithm 1 consists in
increasing some components of the current dual pointuk (step 3). Thus,uk+1 > uk and by
Theorem 1.2 we have thatL(uk+1) > L(uk).

The proof of statement 2 goes as follows. Let us consider the sequence{sk} of subgradients
generated by the algorithm. We have two exclusive cases.

Case 1: There existsk0 such thatsk0 = 0. Then0 ∈ ∂L(uk0) anduk0 ∈ U∗.
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Case 2: At least for one component ofsk, say the 1st, there exists a subsequence{ski
1 } ⊂

{sk
1} such thatski

1 6= 0 for all i = 0, 1, 2, . . .. We will prove by contradiction that this case
cannot happen.

By definition of the algorithm we will have:

uki
1 ≥ uk0

1 + i∆. (7)

Let us show that the subsequence{L(uki)} is unbounded from above which contradicts the
hypothesisU∗ 6= ∅. Let us defineJki = {j | ski

j > 0}. Sincex is a binary vector, it implies, by
Assumption 1, that there exists an absolute constantη > 0 such that

min
j

min
x
{sj = (b−Ax)j | (b−Ax)j > 0} = η.

Thusski
j ≥ η for all j ∈ Jki and for alli.

Using the fact thatcT x ≥ 0 and thatuki ≥ 0, we have

L(uki) = cT x(uki) + (b−Ax(uki))T uki

= cT x(uki) + (ski)
T
uki

≥ (ski)
T
uki

=
∑

j∈Jki

ski
j uki

j

≥ uki
1 η

≥ (uk0
1 + i∆)η.

Thuslimi→∞ L(uki) = +∞.

3 SLR applied to the UFL problem

In the Uncapacitated Facility Location (UFL) problem we have a set of ‘facilities’ indexed by
I = {1, . . . ,m} and a set of ‘clients’ indexed byJ = {1, . . . , n}. The purpose is to open
facilities relative to the set of clients, and to assign each client to a single facility. The cost of an
assignment is the sum of the shortest distancescij from a client to a facility plus the fixed costs
of opened facilitiesfi. The distance is sometimes weighed by an appropriate factor, e.g., the
demand at a client node. The objective is to minimize this sum. The UFL problem is NP-hard
[29] and can be formulated as follows.

z∗ = min
x,y

z(x, y) (8a)

s.t.
m∑

i=1

xij = 1, j ∈ J, (8b)

xij ≤ yi, i ∈ I, j ∈ J, (8c)

xij , yi ∈ {0, 1}, (8d)
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where

z(x, y) =
m∑

i=1

n∑
j=1

cijxij +
m∑

i=1

fiyi. (9)

xij = 1 if facility i serves the clientj, otherwisexij = 0 andyi = 1 if we open facility i,
otherwiseyi = 0.

Following the ideas of the preceding section, we formulate the semi-Lagrangian relaxation
of the UFL problem. We obtain the dual problem

max
u∈Rn

L(u) (10)

and the oracle (note that, now, we keep the equality constraint (8b) as an inequality)

L(u) = min
x,y

f(u, x, y) (11a)

s.t.
m∑

i=1

xij ≤ 1, , j ∈ J, (11b)

xij ≤ yi, i ∈ I, j ∈ J, (11c)

xij , yi ∈ {0, 1}, (11d)

where

f(u, x, y) =
m∑

i=1

n∑
j=1

cijxij +
m∑

i=1

fiyi +
n∑

j=1

uj(1−
m∑

i=1

xij)

=
m∑

i=1

n∑
j=1

(cij − uj)xij +
m∑

i=1

fiyi +
n∑

j=1

uj . (12)

As in the previous section, we denote(x(u), y(u)) an optimal point for the oracle (11). The
associated Lagrangian relaxation, corresponds to formulation (11) without constraints (11b).

3.1 Properties of the SLR dual problem

In this section we show that, in order to solve the SLR dual problem, we can restrict our dual
search to a box. To this end, we define for each clientj, its best combined costsas c̃j :=
mini{cij + fi}. The vector of best combined costs is thusc̃ := (c̃1, . . . , c̃n). Furthermore, for
each clientj, we sort its costscij , and get thesorted costs

c1
j ≤ c2

j ≤ . . . ≤ cm
j .

Theorem 3 u ≥ c̃⇒ u ∈ U∗ andu > c̃⇒ u ∈ int(U∗).

Proof: Consider the oracle

min
x

m∑
i=1

(fiyi +
n∑

j=1

(cij − uj)xij) +
n∑

j=1

uj

m∑
i=1

xij ≤ 1, ∀j

xij ≤ yi, ∀i, j
xij , yi ∈ {0, 1}.
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Assumeu ≥ c̃. If there exists an optimal solution of the oracle such that
∑

i xij = 1, ∀j,
then, by Theorem 1, this solution is optimal for the original problem. Assume we have an oracle
solution with

∑
i xij = 0 for somej. Let ik be such that̃cj = fik + cikj . By hypothesis,

c̃j − uj ≤ 0. Thus,fik + (cikj − uj) ≤ 0 and one can setxikj = 1 andyik = 1 without
increasing the objective value. The modified solution is also optimal. Hence, there exists an
optimal oracle solution with

∑
i xij = 1, ∀j andu ∈ U∗. The second statement of the theorem

follows from c̃ ∈ U∗ and statement 3 of Theorem 1.

Theorem 4 If u ∈ int(U∗), thenu ≥ c1.

Proof: Let us assume assume thatuj0 < c1
j0

for somej0 ∈ J and see that this contradicts
u ∈ int(U∗). If uj0 < c1

j0
thenck

j0
− uj0 > 0 for all k ∈ I. Any optimal solutionx(u) is such

thatxij0(u) = 0, for all i ∈ I. Hence,1 −
∑

i∈I xij0(u) = 1 and by Theorem 1,u is not in
int(U∗).

Corollary 1 Let us consider the scalarε > 0, the vector̄ε, where each component is equal to
ε, and the box

B := {u ∈ Rn | c1 < u ≤ c̃ + ε̄}.

Then, for the UFL problem one has

int(U∗) ∩ B 6= ∅.

This corollary implies that the search for an optimal dual point can be confined to a box. In
particular, takingu = c̃ + ε̄ and solving the oracle foru, yields a primal optimal solution in one
step. As pointed out earlier, it is likely to be impractical because the oracle is too difficult at
thatu. It is also, likely that there is a smalleru∗ ∈ U∗, for which the oracle subproblem would
be easier (with less binary variables) and hopefully tractable by an integer programming solver.
This justifies the use of dual methods that increase the dual iterates in small steps.

3.2 Structure of the oracle: the core subproblem

In this section, we study the structure of the UFL oracle as a function of the dual variableu.
We shall show how some primal variablesxij can be set to zero whenuj is small enough.
This operation, which reduces the size of the oracle, is quite common in Lagrangian relaxation
applied to combinatorial optimization. There, using some appropriate argument, one fixes some
variables of the oracle and obtains a reduced-size oracle called thecore subproblem. (See, for
instance, [7, 1].)

We now define the core UFL subproblem in the SLR case. Letc(u) be the matrix of reduced
costs such thatc(u)ij = cij − uj . Let G = (V ×W,E) be the bipartite graph associated to the
UFL problem, such that each node inV (W ) represents a facility (client) and the edgeeij exists
if facility i can serve clientj. c(u)ij is thus the reduced cost associated toeij . LetE(u) ⊂ E be
the subset of edges with strictly negative reduced cost for a given dual pointu. Let V (u) ⊂ V
andW (u) ⊂ W be the adjacent vertices toE(u). Let G(u) = (V (u) ×W (u), E(u)) be the
induced bipartite subgraph. We callG(u) thecore graph.
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It is easy to see that for anyc(u)ij ≥ 0 there existsx(u) such thatx(u)ij = 0. Therefore,
we can restrict our search to the core graphG(u) to computex(u). The advantage of solving
oracle (11) with core graphG(u) is that in G(u) we may have much less edges (variables
xij) and facility nodes (variablesyj), as we will see in Section 4.6. A further advantage of
solving the core subproblem is that, even thoughG is usually a connected graph,G(u) may
be decomposable into independent subgraphs and then we can decompose the core subproblem
into smaller (easier) subproblems.

We now study the inverse image of the mappingG(u). In other words, we wish to describe
the set ofu’s that have the graphG as a common image through the mappingG(u). It is easy
to see that it is a simple box.

To define an elementary box, we use the sorted costs to partition the domain of each coordi-
nateuj into intervals of the form]ck

j , ck+1
j ], with the convention thatcm+1

j = +∞. Note that

some boxes may be empty (ifck
j = ck+1

j ). These coordinate partitions induce a partition of the
boxB into elementary boxes. It is not difficult to show that, there is a bijection between core
graphsG(u) and elementary boxes. Therefore, it is enough to restrict the dual search to one
representative point per elementary box. The dual ascent algorithm to be presented in the next
section will exploit this structure.

3.3 The dual ascent algorithm to solve the SLR dual problem

We now present a specialized version of the dual ascent method (Algorithm 1) for the UFL
problem. We know by Corollary 1, that the dual search can be confined to the boxB. The
discussion of the previous section shows thatB can be partitioned into elementary boxes and
that it is enough to restrict the dual search to one representative point per elementary box. Our
choice is to take this representative point, as small as possible within each elementary box. Since
an elementary box is determined by the intervals]ck

j , ck+1
j ], we choose the representative point

to beuj = c
l(j)
j + ε (j = 1, . . . , n), for some fixedε > 0.

Our algorithmic scheme is as follows: Take a smallε > 0 and for each clientj, take some
l(j) ∈ I (see Section 4.1 for details). Start the dual search atu0

j := c
l(j)
j + ε (each client node

will have exactlyl(j) core edges). Query the oracle, and if the current dual iterate is not optimal,
update it. To maintain the number of core edges as low as possible, at each iteration, we add at
most one edge per client, that is, we updateuj from c

l(j)
j +ε to c

l(j)+1
j +ε, for somel(j) ∈ I. We

only update the coordinates of the dual iterateuk whose corresponding subgradient coordinate
is not null. The details of this simple procedure are as follows.

Algorithm 2: Dual ascent algorithm (UFL case).

1. Initialization: Setk = 0 andε > 0. For each clientj ∈ J = {1, . . . , n}, set

(a) u0
j = c

l(j)
j + ε for somel(j) ∈ I = {1, . . . ,m},

(b) c̃j = mini{cij + fi},
(c) cm+1

j = +∞.
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2. Oracle call: ComputeL(uk), (x(uk), y(uk)) andsk where

sk
j = 1−

m∑
i=1

xk
ij ,

for all j ∈ J . (Note thatsk
j ∈ {0, 1}.)

3. Stopping criterion: If sk = 0 then stop. The pair(uk; (x(uk), y(uk)) is a primal-dual
optimal point.

4. Multiplier updating: For eachj ∈ J such thatsk
j = 1, set

uk+1
j = min{cl(j)+1

j , c̃j}+ ε andl(j) = min{l(j) + 1, n}.

5. Setk = k + 1 and go to Step 2.

By construction, the iterates are monotonic with at least one strictly increasing coordinate.
The algorithm converges in a finite number of iterations. The semi-Lagrangian dual function is
also monotonic, which makes the algorithm a dual-ascent.

4 Computational experiments

The objective of our numerical test is twofold: first, we study the quality of the solution given
by the semi-Lagrangian relaxation (SLR) and second we study the SLR performance in terms
of CPU time. The CPU time limit is set to 7200 seconds. First, we compare our combined SLR-
CPLEX approach to the plain CPLEX. Second, we compare our results to the results reported
in [32] and in theUncapacitated Facility Location Library(UflLib) [23].

4.1 Parameter setting for the algorithms

Programs have been written in MATLAB 7.0 and run on a PC (Pentium-IV, 3.0 GHz, with 3
GB of RAM memory) under the Windows XP operating system. The reader should bear in
mind that results reported in [32] were found on a different machine (SGI Challenge with 28
196-MHz MIPS R10000 processors, although each execution was limited to a single processor)
and programs were implemented in C++.

In our context and using the terminology of oracle based optimization [2], to call or to solve
anoraclemeans to computeL(uk): Oracle 1 for the Lagrangian relaxation and Oracle 2 for the
semi-Lagrangian relaxation. To solve Oracle 2 (a large-scale mixed integer program) we have
intensively used CPLEX 9.1 (default settings) interfaced with MATLAB [3].

The dual ascent algorithm is implemented as stated in the previous section without parameter
tuning (ε = 10−3). Proximal-ACCPM is used in its generic form as described in [2] with
some tuning. We use Proximal-ACCPM in a two phase scheme: in the first phase we solve the
Lagrangian relaxation (LR) dual problem. In the second phase we solve the semi-Lagrangian
relaxation (SLR) dual problem. The Proximal-ACCPM parameter setting is as follows: In the
LR phase, we use a proximal weightρ that at each Proximal-ACCPM iteration is updated within
the range[10−6, 104] and the required precision is10−6. In the SLR phase, we choose to fix
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the reference proximal point at the initial pointu0. As pointed out in [5], an optimal LR dual
point u∗LR is a good starting point for the SLR. To be more precise, in our UFL computational

experiments, for each clientj, we take thecl(j)
j which is closest tou∗LRj and defineu0

j :=

c
l(j)
j + ε, for some smallε > 0 (as we saw in Algorithm 2). The proximal weightρ has been

fixed, by tuning, to10−4 for the Barahona-Chudak instances and to10−3 for the Koerkel-Ghosh
instances.

4.2 Instance description

For our test we use 36unsolved UFL instances that can be obtained in the UFL library UflLib
(see Table 1). The first set, with 18 instances, is called Barahona-Chudak [4]. In the Euclidian
planen points are randomly generated in the unit square[0, 1]×[0, 1]. Each point simultaneously
represents a facility and a client(m = n), with n = 500, 1000, ..., 3000. The connection costs
cij are determined by the Euclidian distance. In each instance all the fixed costsfi are equal and
calculated by

√
n/l with l = 10, 100 or 1000. All values are rounded up to 4 significant digits

and made integer [23]. We use the labeln− l to name these instances.

The second set of UFL instances is called Koerkel-Ghosh. In these instances, the con-
nection costscij are drawn uniformly at random from[1000, 2000]. The fixed costsfi are
drawn uniformly at random from [100, 200] in class ‘a’, from[1000, 2000] in class ‘b’ and
from [10000, 20000] in class ‘c’. Furthermore symmetric and asymmetric connection ma-
trices are created. UflLib provides instances of the 3 largest sizes presented in [16] with
n = m = 250, 500 and 750. Of the 90 instances proposed in the UflLib, we took 18 repre-
sentative ones. We use the label gX00YZ-1 to name these instances, where X can be either ‘s’
or ‘a’ for the symmetric or asymmetric case respectively. Y is equal to ‘n’ and Z is the class (a,
b or c).

4.3 CPLEX performance

In Table 2 we report the results obtained with CPLEX 9.1 (default settings and 7200 seconds
as CPU time limit). Barahona-Chudak instances: We observe that CPLEX has solved the first
three instances. However, the remaining 15 instances have become too large, even to solve
their LP relaxation. Koerkel-Gosh instances: CPLEX has given an integer solution and a lower
bound in most of the cases. Cases gs00750a-1 and ga00750a-1 have become too large at the
beginning of the B&B process (CPLEX has been able to solve their LP relaxation and compute
an integer solution). For the other 4 instances with 750 points, CPLEX has not even solved the
LP relaxation within 7200 seconds.

4.4 Dual solution quality

In Table 3 we report the dual solution quality. We observe an important result: the semi-
Lagrangian relaxation closes the duality gap (if convergence is reached). Column (3.a) reports
the best known upper bound (UB) to the optimal primal cost. In the remaining 6 columns we re-
port the results concerning the Lagrangian relaxation (LR) and the semi-Lagrangian relaxation
(SLR) bounds.
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Table 1:Instance description:For the Barahona-Chudak instances, the fixed cost is
the same for all facilities. For the Koerkel-Ghosh instances the fixed cost is randomly
chosen for each facility according to a uniform distribution.

Barahona-Chudak Nb. of Fix Koerkel-Ghosh Nb. of Fix
instances clients cost instances clients cost
500-1000 500 224 gs00250a-1 250U [100,200]
500-100 500 2236 gs00250b-1 250U [1000,2000]
500-10 500 22361 gs00250c-1 250U [10000,20000]
1000-1000 1000 316 gs00500a-1 500U [100,200]
1000-100 1000 3162 gs00500b-1 500U [1000,2000]
1000-10 1000 31623 gs00500c-1 500U [10000,20000]
1500-1000 1500 387 gs00750a-1 750U [100,200]
1500-100 1500 3873 gs00750b-1 750U [1000,2000]
1500-10 1500 38730 gs00750c-1 750U [10000,20000]
2000-1000 2000 447 ga00250a-1 250U [100,200]
2000-100 2000 4472 ga00250b-1 250U [1000,2000]
2000-10 2000 44721 ga00250c-1 250U [10000,20000]
2500-1000 2500 500 ga00500a-1 500U [100,200]
2500-100 2500 5000 ga00500b-1 500U [1000,2000]
2500-10 2500 50000 ga00500c-1 500U [10000,20000]
3000-1000 3000 548 ga00750a-1 750U [100,200]
3000-100 3000 5477 ga00750b-1 750U [1000,2000]
3000-10 3000 54772 ga00750c-1 750U [10000,20000]

In column (3.b) we have the LR lower bound (obtained with Proximal-ACCPM). In column
(3.c) we give the LR duality gap (in fact we give an upper bound to the true duality gap since
in some cases we do not know the true primal optimum but an upper bound). In the remai-
ning 4 columns (3.d-g), we report the SLR lower bound information, obtained either with the
dual ascent method o with Proximal-ACCPM. We also give the optimality gap of these dual
values. Optimal SLR dual bounds have been written in boldface. In the remaining cases, the
SLR procedure was stopped before reaching optimality because of the CPU time limit (7200
seconds).

4.5 Primal solution quality

In Table 4 we report the primal solution quality. Column (4.a) reports the best known lower
bound. In column (4.b), we have the upper bounds (UB) to the UFL optima, reported in lite-
rature. In the first half of this column, we have the results for the Barahona-Chudak instances
reported in [32], (they were obtained as the average of several runs). In the second half of this
column, we have the results for the Koerkel-Ghosh instances as reported in UflLib (the results
reported in [32] for these instances do not correspond to single instances but for groups of 5
instances). In columns (4.d) and (4.f) we have the UB obtained in the framework of the dual
ascent method and Proximal-ACCPM, respectively.

In this section, the important result is that the SLR approach has been able to solve 18
instances of the 36 previouslyunsolved ones. These 18 instances have been solved by Proximal-
ACCPM. On the other hand, the dual ascent method has been able to solve 16 UFL instances.
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Table 2:CPLEX performance: ‘UB’ stands for upper bound, ‘LB’ for lower bound.
Larger instances have produced an ‘Out of memory’ either before CPLEX solved the
LP relaxation or after (‘Before LP’ and ‘After LP’).

Instance UB LB B&B gap (%) CPLEX time (sec.) Out of memory
500-1000 99169 99169 0.00 12
500-100 326790 326790 0.00 4
500-10 798577 798577 0.00 35
1000-1000 - - - - Before LP
1000-100 - - - - Before LP
1000-10 - - - - Before LP
1500-1000 - - - - Before LP
1500-100 - - - - Before LP
1500-10 - - - - Before LP
2000-1000 - - - - Before LP
2000-100 - - - - Before LP
2000-10 - - - - Before LP
2500-1000 - - - - Before LP
2500-100 - - - - Before LP
2500-10 - - - - Before LP
3000-1000 - - - - Before LP
3000-100 - - - - Before LP
3000-10 - - - - Before LP
gs00250a-1 257999 257803 0.08 7200
gs00250b-1 276892 274324 0.94 7200
gs00250c-1 332935 324142 2.71 7200
gs00500a-1 512237 510446 0.35 7200
gs00500b-1 654860 533027 22.86 7200
gs00500c-1 746506 601986 24.01 7200
gs00750a-1 785232 762565 2.97 5023 After LP
gs00750b-1 - - - 7200
gs00750c-1 - - - 7200
ga00250a-1 257991 257778 0.08 7200
ga00250b-1 276556 274112 0.89 7200
ga00250c-1 334735 324892 3.03 7200
ga00500a-1 512071 510614 0.29 7200
ga00500b-1 649226 533339 21.73 7200
ga00500c-1 747626 602861 24.01 7200
ga00750a-1 783973 762464 2.82 5707 After LP
ga00750b-1 - - - 7200
ga00750c-1 - - - 7200
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Table 3:Dual solution quality: ‘UB’ stands for upper bound, ‘LB’ for lower bound,
‘PACCPM’ for Proximal-ACCPM, ‘DA’ for dual ascent. Optimal lower bounds are in
boldface.

Instance UB LB
Lagrangian semi-Lagrangian semi-Lagrangian
(PACCPM) (Dual ascent) (PACCPM)

Bound Dual Bound Optimality Bound Optimality
Gap (%) Gap (%) Gap (%)

(3.a) (3.b) (3.c) (3.d) (3.e) (3.f) (3.g)
500-1000 99169 99160 0.0091 99169 0 99169 0
500-100 326790 326790 0 326790 0 326790 0
500-10 798577 798577 0 798577 0 798577 0
1000-1000 220560 220559 0.0003 220560 0 220560 0
1000-100 607878 607814 0.0105 607878 0 607878 0
1000-10 1434154 1433389 0.05341434154 0 1434154 0
1500-1000 334962 334944 0.0054 334962 0 334962 0
1500-100 866454 866453 0.0001 866454 0 866454 0
1500-10 2000801 1999284 0.0758 2000696 0.00522000801 0
2000-1000 437686 437678 0.0018 437686 0 437686 0
2000-100 1122748 1122746 0.00021122748 0 1122748 0
2000-10 2558118 2557753 0.01432558118 0 2558118 0
2500-1000 534405 534395 0.0019 534405 0 534405 0
2500-100 1347516 1347494 0.00161347516 0 1347516 0
2500-10 3100225 3096856 0.1087 3097647 0.0831 3097647 0.0831
3000-1000 643463 643432 0.0048 643463 0 643463 0
3000-100 1602335 1601652 0.0426 1602063 0.0170 1602120 0.0134
3000-10 3570766 3570752 0.00043570766 0 3570766 0
Partial average 1200367.0 1199985 0.0184 1200203 0.0059 1200212 0.0054
gs00250a-1 257964 257639 0.1259 257899 0.0252257964 0
gs00250b-1 276761 273693 1.1085 275363 0.5051 275574 0.4289
gs00250c-1 332935 322696 3.0753 329135 1.1414 330559 0.7137
gs00500a-1 511229 510408 0.1606 510408 0.1606 510408 0.1606
gs00500b-1 537931 533020 0.913 534029 0.7254 533477 0.8280
gs00500c-1 620041 601962 2.9158 607260 2.0613 609333 1.7270
gs00750a-1 763671 762562 0.1453 762562 0.1452 762562 0.1452
gs00750b-1 797026 790334 0.8396 790917 0.7665 790917 0.7665
gs00750c-1 900454 875340 2.789 879430 2.3348 879343 2.3445
ga00250a-1 257957 257618 0.1315 257882 0.0291257957 0
ga00250b-1 276339 273296 1.1012 275080 0.4556 275200 0.4122
ga00250c-1 334135 322958 3.3451 329839 1.2857 331171 0.8871
ga00500a-1 511422 510587 0.1632 510587 0.1633 510587 0.1633
ga00500b-1 538060 533334 0.8784 534416 0.6772 533837 0.7849
ga00500c-1 621360 602852 2.9787 608518 2.0668 609975 1.8323
ga00750a-1 763576 762462 0.1459 762462 0.1459 762462 0.1459
ga00750b-1 796480 790112 0.7995 790631 0.7344 790630 0.7345
ga00750c-1 902026 875593 2.9304 880301 2.4085 879601 2.4861
Partial average 555520.4 547581 1.3637 549818 0.8795 550087 0.8089
Global average 877943.7 873783 0.6910 875010 0.4427 875149 0.4071
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For the unsolved instances we have reported the upper bound obtained by the following
simple heuristic which computes a primal feasible solution. At each iteration of the SLR method
the oracle solutiony(uk) proposes to open a set of facilities. To complete the solution, each
client is assigned to its closest open facility. If the SLR method fails to converge, we take the
best heuristic solution as the primal SLR solution. In general, the sophisticated heuristic used
in [32] performs better than our simple primal heuristic. At the same time, the SLR procedure
combined with this simple heuristic, has given better primal solutions than CPLEX.

4.6 Instance reduction

Very often, Lagrangian relaxation is used to decompose difficult problems. The decomposition
induced by SLR is more coarse-grained than the Lagrangian relaxation one. Thus for example,
in the UFL problem, after Lagrangian relaxation, one has one subproblem per facility. Howe-
ver, after SLR, one may have from several to only one subproblem. Furthermore, the number
of subproblems usually is different for each SLR iteration. For this reason, we do not report
the number of subproblems at each iteration, but its average. In Table 5, we have the average
number of subproblems (ANS) per SLR iteration. More specifically, columns (5.a) and (5.b) re-
port the ANS for the dual ascent method and for Proximal-ACCPM respectively. For example,
in instance 500-1000 the ANS value is 108 and 84 for the dual ascent method and for Proxi-
mal.ACCPM, respectively. This means that the SLR method has managed to decomposed this
instance. In other 30 instances (instance 500-100 for example) the SLR does not decompose the
instance (ANS = 1). Note that the decomposition is slightly better with the dual ascent method
than with Proximal-ACCPM.

An important advantage of the SLR is that usually it drastically reduces the number of re-
levant variables (otherwise said, we can fix to 0 many variables). In column (5.c) we have the
total number ofxij variables. For example, instance 500-1000 has 250000xij variables, but, as
we can see in column (5.d) only 0.3% are relevant in the SLR combined with the dual ascent
method (the remaining 99.7% are fixed to 0). The number of relevantxij variables in the case of
Proximal-ACCPM is reported in (5.e). The analogous results for theyi variables can be found
in columns (5.f-h). Note that the number of variables is different for each SLR iteration and
therefore we give average figures corresponding to all the SLR iterations.

On average, in this test, the SLR only uses 2.5% of thexij variables and 46% of theyi

variables when we use the dual ascent algorithm (columns (5.d) and (5.g)). In the Proximal-
ACCPM case we use a slightly higher number of variables (columns (5.e) and (5.h)).

4.7 Performance

Finally, in Table 6 we report the performance of the dual ascent method and Proximal-ACCPM
in terms of the number of SLR iterations and CPU time. The CPU time limit is set as follows:
we stop the SLR algorithm after the first completed SLR iteration that produces a cumulated
CPU time above 7200 seconds. If that iteration, say thekth one, goes beyond 10000 seconds,
we stop the SLR procedure and report the results of the(k − 1)th iteration.

Proximal-ACCPM reduces by 60% the average number of dual ascent iterations. One would
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Table 4: Primal solution quality: ‘SLR’ stands for semi-Lagrangian relaxation,
‘PACCPM’ for Proximal-ACCPM, ‘Opt.’ for optimality, ‘LB’ for lower bound, ‘UB’
for upper bound and ‘DA’ for dual ascent. [32] obtains an upper bound by a heuristic
method. Optimal costs for the UFL problem are in boldface.

Instance LB UB

[32] % Opt. DA % Opt. PACCPM % Opt.
(4.a) (4.b) (4.c) (4.d) (4.e) (4.f) (4.g)

500-1000 99169 99169.0 100 99169 100 99169 100
500-100 326790 326805.4 99.9953 326790 100 326790 100
500-10 798577 798577.0 100 798577 100 798577 100
1000-1000 220560 220560.9 99.9996 220560 100 220560 100
1000-100 607878 607880.4 99.9996 607878 100 607878 100
1000-10 1434154 1434185.4 99.9978 1434154 100 1434154 100
1500-1000 334962 334973.2 99.9967 334962 100 334962 100
1500-100 866454 866493.2 99.9955 866454 100 866454 100
1500-10 2000801 2001121.7 99.9840 2000801 100 2000801 100
2000-1000 437686 437690.7 99.9989 437686 100 437686 100
2000-100 1122748 1122861.9 99.9899 1122748 100 1122748 100
2000-10 2558118 2558120.8 99.9999 2558118 100 2558118 100
2500-1000 534405 534426.6 99.9960 534405 100 534405 100
2500-100 1347516 1347577.6 99.9954 1347516 100 1347516 100
2500-10 3097647 3100224.7 99.9168 3122045 99.2124 3122045 99.21237
3000-1000 643463 643541.8 99.9878 643463 100 643463 100
3000-100 1602120 1602530.9 99.9744 1602335 99.9866 1602397 99.98271
3000-10 3570766 3570818.8 99.9985 3570766 100 3570766 100
Partial average 1200212 1200420.0 99.9903 1201579 99.9555 1201583 99.9553
gs00250a-1 257964 257964 100 258137 99.9329 257964 100
gs00250b-1 275574 276761 99.5693 279416 98.6058 278337 98.9974
gs00250c-1 330559 332935 99.2812 337270 97.9698 333617 99.0749
gs00500a-1 510408 511229 99.8392 513038 99.4847 513038 99.4847
gs00500b-1 534029 537931 99.2693 551716 96.6880 551716 96.6880
gs00500c-1 609333 620041 98.2427 641659 94.6949 641659 94.6949
gs00750a-1 762562 763671 99.8545 767269 99.3827 767269 99.3827
gs00750b-1 790917 797026 99.2275 810239 97.5569 810239 97.5569
gs00750c-1 879430 900454 97.6093 971616 89.5175 971616 89.5175
ga00250a-1 257957 257969 99.9953 258363 99.8426 257957 100
ga00250b-1 275200 276339 99.5861 280695 98.0033 278442 98.8219
ga00250c-1 331171 334135 99.1050 346296 95.4329 337398 98.1197
ga00500a-1 510587 511422 99.8365 513673 99.3956 513673 99.3956
ga00500b-1 534416 538060 99.3181 546253 97.7851 546253 97.7851
ga00500c-1 609975 621360 98.1335 670597 90.0616 643140 94.5629
ga00750a-1 762462 763576 99.8539 767965 99.2783 767965 99.2783
ga00750b-1 790631 796480 99.2602 808105 97.7899 808105 97.7899
ga00750c-1 880301 902026 97.5321 1000972 86.2921 1008497 85.4373
Partial average 550193 555521 99.1952 573516 96.5397 571494 97.0326
Global average 875202 877970.5 99.5928 887547 98.2476 886538 98.4940
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Table 5: Semi-Lagrangian reduction and decomposition:‘ANS’ stands for ave-
rage number of subproblems per SLR iteration, ‘DA’ for dual ascent, ‘PACCPM’ for
proximal-ACCPM, ‘ANX’ for average number of relevantxij variables per SLR ite-
ration (in %) and ‘ANY’ for average number of relevantyi variables per SLR iteration
(in %).

Instance ANS Total ANX (%) Total ANY (%)

DA PACCPM Nb. of xij DA PACCPM Nb. of yi DA PACCPM
(5.a) (5.b) (5.c) (5.d) (5.e) (5.f) (5.g) (5.h)

500-1000 108 84 250000 0.3 0.5 500 56 98
500-100 1 1 250000 1.2 1.2 500 66 66
500-10 1 1 250000 2.8 2.8 500 35 35
1000-1000 106 29 1000000 0.3 0.3 1000 89 94
1000-100 1 1 1000000 0.8 0.9 1000 55 61
1000-10 1 1 1000000 2.6 3.4 1000 39 51
1500-1000 11 7 2250000 0.3 0.3 1500 86 87
1500-100 1 1 2250000 0.6 0.6 1500 50 50
1500-10 1 1 2250000 1.8 2.6 1500 30 44
2000-1000 2 2 4000000 0.2 0.2 2000 82 82
2000-100 1 1 4000000 0.6 0.6 2000 50 50
2000-10 1 1 4000000 1.2 2.2 2000 25 42
2500-1000 3 3 6250000 0.2 0.2 2500 80 80
2500-100 1 1 6250000 0.5 0.6 2500 46 58
2500-10 1 1 6250000 1.7 1.7 2500 35 35
3000-1000 2 2 9000000 0.2 0.2 3000 78 78
3000-100 1 1 9000000 0.5 0.6 3000 53 56
3000-10 1 1 9000000 1.0 1.0 3000 23 23
Partial average 14 8 3791667 0.9 1.1 1750 54 61
gs00250a-1 1 1 62500 2.4 4.6 250 60 87
gs00250b-1 1 1 62500 5.6 6.3 250 50 54
gs00250c-1 1 1 62500 14.4 18.4 250 43 52
gs00500a-1 1 1 250000 1.3 1.3 500 48 48
gs00500b-1 1 1 250000 1.8 2.2 500 24 30
gs00500c-1 1 1 250000 5.1 6.1 500 23 27
gs00750a-1 1 1 562500 1.0 1.0 750 48 48
gs00750b-1 1 1 562500 1.6 1.6 750 26 26
gs00750c-1 1 1 562500 3.0 3.0 750 17 17
ga00250a-1 1 1 62500 2.5 4.3 250 62 85
ga00250b-1 1 1 62500 5.5 5.9 250 48 50
ga00250c-1 1 1 62500 13.5 16.9 250 40 47
ga00500a-1 1 1 250000 1.4 2.4 500 53 31
ga00500b-1 1 1 250000 2.4 1.4 500 31 24
ga00500c-1 1 1 250000 5.2 6.3 500 23 30
ga00750a-1 1 1 562500 1.0 1.0 750 44 44
ga00750b-1 1 1 562500 1.3 1.5 750 23 24
ga00750c-1 1 1 562500 2.9 2.7 750 16 15
Partial average 1 1 291667 4.0 4.8 500 38 41
Global average 7 4 2041667 2.5 3.0 1125 46 51
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Figure 1: CPU time per iteration for instance 1500-10.

expect a similar reduction in the CPU time, instead of the mentioned 35%. The reason for this
mismatch, as we can see in (6.e) and (6.f), is that the average CPU time per SLR iteration is
greater for Proximal-ACCPM than for the dual ascent algorithm. This is because Proximal-
ACCPM perform a faster increase of the Lagrange multiplier values, which produces a faster
increase in the number of relevant variables, as observed in Table 5. This produces harder (CPU
time consuming) Oracle 2’s. (See Fig. 1 and Fig. 2.)

As usual, a heuristic method reduces the CPU time of an exact method at the price of no
information about the solution quality. If we compare the best SLR results (column (6.f)) versus
the results reported in [32] (column (6.g)) we observe that: for the Barahona-Chudak instances,
the SLR CPU time is very competitive, since at the price of an extra 64% of CPU time, we solve
up to optimality 16 instances. For the 2 remaining instances we can evaluate its quality by the
SLR lower bound. For the Koerkel-Ghosh instances SLR is less competitive (quality solution
and CPU time) compared to [32]. However, for these instances and by using the SLR bounds we
can determine for the first time that, on average, the [32] solutions are at least 99.18% optimal
(Table 4).

5 Conclusions

The contributions of this paper are twofold: empirical and theoretical.

Empirical contribution:We have shown by example that the performance of a general MIP
solver, as CPLEX, can be enhanced by combining it with the semi-Lagrangian relaxation (SLR)
approach. In our computational experiments, CPLEX solved 3 out of 36 Uncapacitated Facility
Location (UFL) unsolved instances from the UflLib. In contrast, by using the SLR together
with two standard optimization tools, CPLEX and Proximal-ACCPM, we solved 18 instances.
For the remaining 18 still unsolved UFL instances, we have improved the best known lower
bound and confirmed, for the first time, that the Hybrid Multistart heuristic of [32] provides
near optimal solutions (over 99% optimal). The reason for this good result is that, the SLR
drastically reduced the number of UFL relevant variables. Roughly speaking, Onthe average
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Table 6:Performance: ‘PACCPM’ stands for proximal-ACCPM and ‘DA’ for dual
ascent. [32] uses an heuristic method.

Instance Nb. of completed iterations Total CPU time (sec.)

LR SLR LR LR + SLR [32]

PACCPM DA PACCPM PACCPM DA PACCPM
(6.a) (6.b) (6.c) (6.d) (6.e) (6.f) (6.g)

500-1000 128 1 1 2.7 3 4 33
500-100 100 1 1 1.9 2 2 33
500-10 177 1 1 4.1 5 5 24
1000-1000 121 1 1 3.5 6 6 174
1000-100 276 2 2 11.8 16 19 149
1000-10 535 29 5 46.1 4024 1061 142
1500-1000 128 1 1 5.0 9 10 348
1500-100 311 1 1 19.0 22 22 379
1500-10 327 24 5 19.3 7438 3156 387
2000-1000 137 1 1 7.0 12 12 718
2000-100 245 1 1 16.7 23 23 651
2000-10 408 40 4 37.7 2256 661 760
2500-1000 136 1 1 9.4 18 18 1420
2500-100 342 2 2 36.1 55 89 1128
2500-10 754 1 1 177.7 8214 8214 1309
3000-1000 160 5 3 14.0 76 63 1621
3000-100 427 10 8 64.1 7355 8428 1978
3000-10 413 1 1 60.5 90 90 2081
Partial average 285 7 2 29.8 1646 1216 741
gs00250a-1 209 11 5 7.1 8173 5765 6
gs00250b-1 165 11 3 2.9 9145 3845 8
gs00250c-1 252 37 13 5.2 7831 7929 7
gs00500a-1 195 0 0 9.5 10 10 40
gs00500b-1 191 2 1 10.2 2771 515 52
gs00500c-1 143 14 5 7.1 7241 7573 57
gs00750a-1 192 0 0 12.9 13 13 118
gs00750b-1 143 1 1 11.3 5436 5234 127
gs00750c-1 140 8 2 10.7 7274 1868 137
ga00250a-1 177 9 4 5.9 7389 6567 5
ga00250b-1 229 12 3 4.6 7283 2223 8
ga00250c-1 156 36 13 2.5 7675 7804 8
ga00500a-1 233 0 0 9.9 10 10 44
ga00500b-1 229 3 1 4.6 8899 478 53
ga00500c-1 150 16 5 5.3 7936 6604 51
ga00750a-1 199 0 0 14.1 14 14 113
ga00750b-1 137 1 1 10.6 3134 3181 126
ga00750c-1 126 10 2 7.7 9018 1554 130
Partial average 181 10 3 7.9 5514 3399 61
Global average 233 8 3 18.8 3580 2307 401
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Figure 2: Cumulated CPU time for the instance 1500-10.

number of relevantxij variables was reduced to 3% and the average number of relevantyi

variables, was reduced to 50%.

Also from an empirical point of view, we have compared two dual optimization methods:
Proximal-ACCPM and a dual ascent method. Proximal-ACCPM has shown a better perfor-
mance than the dual ascent: it has produced similar and sometimes better solutions with a CPU
time reduction of 35%. Within the 2 hours of CPU time limit, Proximal-ACCPM and the dual
ascent method have fully solved 18 and 16 UFL instances, respectively (from a pool of 36 un-
solved instances). The advantage of the dual ascent method is its extreme simplicity compared
to Proximal-ACCPM.

Theoretical contribution: From a theoretical point of view, this paper has proposed an ex-
tension of the Koerkel dual multi-ascent method to solve the SLR dual problem and we have
proved (finite) convergence. Furthermore, We have studied the theoretical properties of the SLR
dual problem in the UFL case. We have shown that for the UFL problem we can restrict our dual
search to a box whose definition depends on the problem costs. This property has not shown
to be very useful for the dual ascent method. In contrast, in the case of Proximal-ACCPM the
explicit use of this box has slightly improved the dual search.
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