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Abstract

The Quadratic Assignment Problem (QAP) can be solved by linearization,
where one formulates the QAP as a mixed integer linear programming (MILP)
problem. On the one hand, most of these linearization are tight, but hardly ex-
ploited within a reasonable computing time because of their size. On the other
hand, Kaufman and Broeckx formulation [1] is the smallest of these lineariza-
tions, but very weak. In this paper, we analyze how Kaufman and Broeckx
formulation can be tightened to obtain better QAP-MILP formulations. As we
show in our numerical experiments, these tightened formulations remain small
but computationally effective in order to solve the QAP by means of general
purpose MILP solvers.

Key words: quadratic assignment problem, mixed integer linear programming.

1. Introduction

In 1957, the Quadratic Assignment Problem (QAP) was introduced by Koopmans and Beck-
mann [2] as a mathematical model for the location of a set of indivisible economic activities.
In general, QAP can be described as a one-to-one assignment problem of n facilities to n lo-
cations, which minimizes the sum of the total quadratic interaction cost, the flow between the
facilities multiplied with their distances, and the total linear cost associated with allocating
a facility to a certain location. Consider the set N = {1, 2, · · · , n} and three n × n matri-
ces F = (fij), D = (dij) and C = (cij), the quadratic assignment problem with coefficient
matrices F , D and C, shortly denoted by QAP , can be stated as follows:
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min
x∈X

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

fikdjl xijxkl +
n∑

i=1

n∑
j=1

cijxij (1.1)

where

X =
{

x |
n∑

j=1

xij = 1 i ∈ N (1.2)

n∑
i=1

xij = 1 j ∈ N (1.3)

xij ∈ {0, 1} i, j ∈ N
}

, (1.4)

fik denotes the amount of flow between facilities i and k, djl denotes the distance between
locations j and l, and cij denotes the cost of locating facility i at location j. xij = 1 if facility
i is assigned to location j, otherwise, xij = 0.

In [3] a more general expression of (1.1) was introduced by using a four-dimensional array
q̂ijkl instead of the flow-distance products fikdjl:

min
x∈X

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

q̂ijkl xijxkl +
n∑

i=1

n∑
j=1

cijxij . (1.5)

Obviously, the linear terms can be eliminated by setting qijij := q̂ijij + cij :

min
x∈X

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

qijkl xijxkl. (1.6)

Without loss of generality, we can assume that qijkl are nonnegative. If they are negative,
we add a sufficiently large constant to all qijkl, which does not change the optimal permutation
and increase the objective function by n2 times the added constant.

Over the years, the QAP has drawn the researcher’s attention worldwide and extensive
research has been done. From the theoretical point of view, it is because of the high com-
putational complexity: QAP is NP-hard, and even finding an ε-approximate solution is a
hard problem [4]. Moreover, many well-known classical combinatorial optimization problems
such as the traveling salesman problem, the graph partitioning problem, the maximum clique
problem can be reformulated as special cases of the QAP, see [5] and [6] for details. From the
practical point of view, it is because of the diversified applications of the QAP. The QAP has
been applied in many fields such as backboard wiring [7], typewriter keyboards and control
panels design [8], scheduling [9], numerical analysis [10], storage-and-retrieval [11], and many
others. More advances in theoretical aspects, solution methods and applications of the QAP
can be found in [5, 12, 13, 14, 15, 16, 17, 18].

One common approach to solve the QAP is to ‘linearize’ it, that is, reformulate it as a pure
or mixed integer linear programming problem. Lawler [3] replaced the quadratic terms xijxkl

in the objective function by n4 variables yijkl = xijxkl. More details of this reformulation
linearization for the QAP can also be found in [19, 20, 21]. The main drawback of
this approach is the huge number of variables. Kaufman and Broeckx [1] proposed a mixed
integer linearization with n2 binary variables and n2 real variables (see Section 2.2.). Al-
though this is the smallest QAP linearization, its LP relaxation is known to be usually weak.
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Recently, Xia and Yuan [22, 23, 24] tightened Kaufman-Broeckx formulation, basically, by
introducing new constraints based on the Gilmore-Lawler constants (see Section 2.3.). In this
paper we will concentrate on linerizations derived from the Kaufman-Broeckx formulation,
which we will call the Kaufman-Broeckx (KB) family of formulations.

The objective of this paper is to study the performance of the KB family of formulations
when one uses a general purpose mixed integer linear programming solver to solve the QAP.
This objective will be developed as follows. In section 2, we will review the Gilmore-Lawler
bound, the Kaufman-Broeckx linearization and the Xia-Yuan linearization. In section 3, we
will enhance the KB family of formulations with a new QAP linearization. In section 4, on the
one hand we will show that the Kaufman-Broeckx formulation is the weakest possible QAP
linearization and on the other hand, we will study the LP relaxation of the new linearization.
In section 5 we will analyze the computational performance of the KB family of formulations.

2. The Kaufman-Broeckx family of linearizations

Here we shortly review the Gilmore-Lawler bound, and the two current smallest QAP lin-
earizations, namely, Kaufman-Broeckx linearization and Xia-Yuan linearization. As we al-
ready said, Xia and Yuan have derived their formulation from Kaufman-Broeckx formulation.
In this paper we will study this type of formulations which we will call the Kaufman-Broeckx
(KB) family of formulations.

2.1. Gilmore-Lawler bound

The Gilmore-Lawler bound was derived by Gilmore [25] and Lawler [3]. Consider the Lawler
QAP (1.5) with coefficient matrix Q = (qijkl). For each pair i, j ∈ N , solve the following
linear assignment problem (LAP) and denote its optimal value as lij :

min
n∑

k=1
k 6=i

n∑
l=1
l6=j

qijkl xkl (2.7)

n∑
k 6=i

xkl = 1, l ∈ N and l 6= j (2.8)

n∑
l 6=j

xkl = 1, k ∈ N and k 6= i (2.9)

xkl ∈ {0, 1}, k, l ∈ N and k 6= i, l 6= j (2.10)

The Gilmore-Lawler bound for the QAP is given by the optimal value of the LAP of size n

with cost matrix (lij + qijij):

GLB : min
x∈X

n∑
i=1

n∑
j=1

(lij + qijij)xij (2.11)
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2.2. Kaufman-Broeckx linearization

Kaufman and Broeckx [1, 26] introduced n2 continuous variables

z̃ij = xij

n∑
k=1

n∑
l=1

qijklxkl

and n2 + 2n constraints, to derive the following QAP linearization:

KBL : min
x∈X

n∑
i=1

n∑
j=1

z̃ij (2.12)

s. t. z̃ij ≥
n∑

k=1

n∑
l=1

qijklxkl − ãij(1− xij) i, j ∈ N (2.13)

z̃ij ≥ 0 i, j ∈ N (2.14)

where

ãij =
n∑

k=1

n∑
l=1

qijkl. (2.15)

2.3. Xia-Yuan linearization

Xia and Yuan [22, 23, 24] tightened Kaufman and Broeckx formulation, basically, by intro-
ducing new constraints based on the Gilmore-Lawler constants lij :

XY L : min
x∈X

n∑
i=1

n∑
j=1

(z̄ij + qijijxij) (2.16)

s. t. z̄ij ≥
n∑

k=1
k 6=i

n∑
l=1
l6=j

qijklxkl − āij(1− xij) i, j ∈ N (2.17)

z̄ij ≥ lijxij i, j ∈ N (2.18)

where

āij = max{
n∑

k=1
k 6=i

n∑
l=1
l6=j

qijklxkl : xkl satisfy (2.8)− (2.10)} for i, j ∈ N (2.19)

In [23] it is also proved that Xia-Yuan bound is stronger than the Gilmore-Lawler bound:

Theorem 2.1 Let f∗
RXY L be the optimal solution of the LP relaxation of (XY L) and f∗

GLB

the optimal solution of (GLB). Then:

f∗
RXY L ≥ f∗

GLB.
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3. A new linearization in Kaufman-Broeckx family

Now we present another way to tighten Kaufman-Broeckx formulation by using the Gilmore-
Lawler constants lij . This formulation turns out to be similar to Xia-Yuan formulation, as
we will see in Proposition 3.1. However, this new formulation may obtain slightly tighter LP
bounds (see in Table 4, instances labeled by ‘Bur’). This new QAP formulation, which we
call Gilmore-Lawler Linearization (GLL), is as follows:

GLL : min
x∈X

n∑
i=1

n∑
j=1

[zij + (qijij + lij)xij ] (3.20)

s. t. zij ≥
n∑

k=1

n∑
l=1

qijklxkl − aij(1− xij)− (lij + qijij)xij i, j ∈ N (3.21)

zij ≥ 0 i, j ∈ N (3.22)

where

aij = max
{ n∑

k=1

n∑
l=1

qijklxkl : x ∈ X
}

(3.23)

Theorem 3.2 To solve GLL is equivalent to solve the QAP.

Proof: Let us consider FQAP , fQAP (x) and f∗
QAP , the QAP feasible set, the QAP objective

function and the QAP optimum, respectively. Analogously, we consider FGLL, fGLL(x, z) and
f∗

GLL.
Firstly, let us see that any given solution (x, z) ∈ FGLL can be projected to a solution

x ∈ FQAP with the same objective value. We consider the following two cases:

i). If xij = 1, then zij ≥
∑n

k,l=1 qijklxkl−(lij+qijij)xij by (3.21). Considering the definition
of fGLL, we have

zij + (lij + qijij)xij =
n∑

k,l=1

qijklxkl =
n∑

k,l=1

qijklxklxij .

ii). If xij = 0, then zij + (lij + qijij)xij = 0 by (3.21), (3.22), and the definition of fGLL.
Therefore, we have

zij + (lij + qijij)xij =
n∑

k,l=1

qijklxklxij .

Thus, we have seen that fGLL(x, z) = fQAP (x) as we wanted to see. This implies, f∗
GLL ≥

f∗
QAP .

Secondly, let us see that any given solution x ∈ FQAP can be lifted to a solution (x, z) ∈
FGLL with the same objective value. Given a x ∈ FQAP , we define zij =

∑n
k,l=1 qijklxkl −

(lij + qijij) if xij = 1 and zij = 0, otherwise. Obviously, (x, z) ∈ FGLL. Furthermore, for any
i, j ∈ N ,

zij + (lij + qijij)xij = xij

n∑
k,l=1

qijklxkl =
n∑

k,l=1

qijklxklxij ,
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whether xij = 1 or xij = 0. Thus, we have seen that fQAP (x) = fGLL(x, z) as we wanted to
see. This implies, f∗

QAP ≥ f∗
GLL and therefore f∗

QAP = f∗
GLL

All in all, we have proved that if (x∗, z∗) is optimal for GLL, then x∗ is optimal for QAP .

Proposition 3.1 GLL can be written as

min
x∈X

n∑
i=1

n∑
j=1

ẑij (3.24)

s. t. ẑij ≥
n∑

k=1

n∑
l=1

qijklxkl − aij(1− xij) i, j ∈ N (3.25)

ẑij ≥ (qijij + lij)xij i, j ∈ N (3.26)

Proof: Inequalities (3.21) and (3.22) are equivalent to the following inequalities, respec-
tively

zij + (qijij + lij)xij ≥
n∑

k=1

n∑
l=1

qijklxkl − aij(1− xij) i, j ∈ N (3.27)

zij + (qijij + lij)xij ≥ (qijij + lij)xij i, j ∈ N (3.28)

To finish the proof we only need to define ẑij = zij + (qijij + lij)xij , and replace zij +
(qijij + lij)xij by ẑij in (3.20), (3.27) and (3.28).

4. Bounds based on the Kaufman-Broeckx family

of formulations

It is well known that the LP relaxation of the Kaufman-Broeckx linearization gives a poor
QAP bound. In this section, we prove that it gives the worst possible QAP bound, that is,
0. We also prove that much better bounds can be obtained by combining Kaufman-Broeckx
linearization with Gilmore-Lowler constants lij , as in linerizations XY L and GLL. We name
RGLL, RXY L and RKBL the LP relaxations of GLL, XY L and KBL, respectively.

Theorem 4.3 Let f∗
RKBL be the optimal value of the LP relaxation of the Kaufman-Broeckx

linearization. Then
f∗

RKBL = 0.

Proof: Let FRKBL be the feasible set of RKBL. Considering that the objective value of
RKBL is always positive, to prove this result, it is enough to see that there exists one solu-
tion (x0, z̃0) ∈ FRKBL such that fRKBL(x0, z̃0) = 0.

As such point, we take x0
ij = 1

n and z̃0
ij = 0 for all i, j ∈ N. Firstly, let us see that

(x0, z̃0) ∈ FRKBL. Obviously, x0 ∈ X and z̃0
ij ≥ 0. Furthermore, for each i, j ∈ N and for any

6



n > 2, we have

n∑
k=1

n∑
l=1

qijkl
1
n
− ãij(1−

1
n

)

=
1
n

(
n∑

k=1

n∑
l=1

qijkl − ãij(n− 1))

=
1
n

(ãij − ãij(n− 1))

=
2− n

n
ãij

< 0.

Therefore, (x0, z̃0) also satisfies (2.13) and thus (x0, z̃0) ∈ FRKBL. On the other hand, it is
clear that fRKBL(x0, z̃0) = 0.

Theorem 4.4 Let f∗
RGLL, f∗

GLB and f∗
RKBL be the optimal objective values of RGLL, GLB

and RKBL, respectively. Then

f∗
RGLL ≥ f∗

GLB ≥ f∗
RKBL (4.29)

Proof: We denote by RGLB the LP relaxation of GLB. Considering that GLB is a linear
assignment problem we have that f∗

RGLB = f∗
GLB. One can write RGLB as

RGLB : min
n∑

i=1

n∑
j=1

z′ij (4.30)

s. t. (1.2)− (1.3)

z′ij ≥ (lij + qijij)xij i, j ∈ N (4.31)

0 ≤ xij ≤ 0 i, j ∈ N (4.32)

Thus, to prove this theorem, we only need to prove f∗
RGLL ≥ f∗

RGLB and f∗
RGLB ≥ f∗

RKBL.

i). Firstly, let us see f∗
RGLL ≥ f∗

RGLB. By Proposition 3.1 it is clear that RGLB is a
relaxation of RGLL. Therefore f∗

RGLL ≥ f∗
RGLB.

ii). Secondly, let us see f∗
RGLB ≥ f∗

RKBL. By constraints (4.31) we have z′ij ≥ 0 for i, j ∈ N .
Therefore, f∗

RGLB ≥ 0 and by Theorem 4.3 we can conclude that f∗
RGLB ≥ f∗

RKBL.

Lemma 4.1 For a given QAP instance, if fii = 0 and dii = 0 for all i ∈ N , then

cij +
n∑

k=1
k 6=i

n∑
l=1
l6=j

qijkl =
n∑

k=1

n∑
l=1

qijkl i, j ∈ N (4.33)

cij + āij = aij i, j ∈ N (4.34)

Proof: Trivial.

7



Proposition 4.2 Given a QAP instance defined by flow matrix F and distance matrix D,
if fii = 0 and dii = 0 for all i ∈ N , then XY L can be written as

min
x∈X

n∑
i=1

n∑
j=1

ẑij (4.35)

s. t. ẑij ≥
n∑

k=1

n∑
l=1

qijklxkl − aij(1− xij) + cij(1− xij) i, j ∈ N (4.36)

ẑij ≥ (qijij + lij)xij i, j ∈ N (4.37)

Proof: If fii = 0 and dii = 0 for all i ∈ N , we have qijij = cij and
∑n

k=1
k 6=i

qijkj+
∑n

l=1
l6=j

qijil =

0. Furthermore, constraint (2.17) can be rewritten as follows

(2.17) ⇐⇒ z̄ij + cijxij ≥
n∑

k=1
k 6=i

n∑
l=1
l6=j

qijklxkl − āij(1− xij) + cijxij

(By Lemma 4.1) (4.38)

⇐⇒ z̄ij + qijijxij ≥
n∑

k=1

n∑
l=1

qijklxkl − (aij − cij)(1− xij) (4.39)

⇐⇒ z̄ij + qijijxij ≥
n∑

k=1

n∑
l=1

qijklxkl − aij(1− xij) + cij(1− xij) (4.40)

Similarly, constraint (2.18) can be rewritten as follows

(2.18) ⇐⇒ z̄ij + cijxij ≥ lijxij + cijxij

⇐⇒ z̄ij + qijijxij ≥ (lij + qijij)xij (4.41)

Now, we can replace z̄ij + qijijxij by ẑij in (2.16), (4.40) and (4.41), to obtain the following
formulation equivalent to XY L:

min
x∈X

n∑
i=1

n∑
j=1

ẑij (4.42)

s. t. ẑij ≥
n∑

k=1

n∑
l=1

qijklxkl − aij(1− xij) + cij(1− xij) i, j ∈ N (4.43)

ẑij ≥ (lij + qijij)xij i, j ∈ N (4.44)

Theorem 4.5 Given a QAP instance defined by flow matrix F and distance matrix D, if
fii = 0 and dii = 0 for all i ∈ N , then

f∗
RXY L ≥ f∗

RGLL,

where f∗
RXY L and f∗

RGLL are the optimal objective values of RXY L and RGLL, respectively.

Proof: From Propositions 3.1 and 4.2 it is clear that the feasible set of formulation GLL

contains the feasible set of formulation XY L. Furthermore, the two formulations have the
same objective function.
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Corollary 4.1 Given a QAP instance defined by flow matrix F and distance matrix D, if
fii = 0, dii = 0 and cij = 0 for all i, j ∈ N , then

f∗
RXY L = f∗

RGLL.

Proof: From Propositions 3.1 and 4.2.

5. Numerical experiments

The objective of this section is to assess the effectiveness of the small QAP linearizations
presented in this paper. We present the experimental results obtained with formulations
GLL, KBL and XY L used to solve a representative set of instances from QAPLIB [27].
Furthermore, we compare these results with formulation IPQAPR − III presented in [28].
To the best of our knowledge, formulation IPQAPR − III is the best one in order to solve
the QAP by a general purpose MILP solver.

The CPU time limit was set to 14400 seconds. The experiments were conducted on a
laptop with a processor Intel Core Duo 2.80GHz and with 3.95 GB of RAM. Cplex 11.2
(default parameters) interfaced with Matlab 2008b [29] was used to solve the QAP instances.
We have to take into account that, as reported in [28], the IPQAPR − III results were
obtained by using a laptop with a processor Intel Pentium M 1.70GHz and with 1.23 GB of
RAM. Cplex 9.0 (default parameters) interfaced with Matlab 7.0 was used to solve the QAP
instances.

In table 1 we describe the instances used in our test, namely, the size of the instances, the
number of variables xij , yij and zij , and the number of constraints. In these experiments, we
studied two groups of instances: sparse instances (Chr18a-Scr20) and dense ones (Bur26a-
Nug30). In table 1, we also report the density of the flow matrix F = (fij) (DFM), which is
defined as the proportion of non-zero elements in the matrix (in %).

In table 2 we report the quality of the MILP solution computed by Cplex. We present
its objective function (Cost), its brand and bound gap as computed by Cplex B&B Gap =
Cost−B&BBound

10−10+|Cost| × 100% and its optimality gap Opt. Gap = |Cost−Opt. Cost
Opt. Cost | × 100%, where

Opt. Cost denotes the optimal or best known cost reported in literature.
For the 31 tested instances, there are 17, 13, 20 and 9 near optimal solutions (Opt. Gap ≤

1% ) computed by GLL, KBL, XY L and IPQAPR − III, respectively. By using the
same four formulations, for 6, 1, 6 and 6 instances, respectively, optimality was proved
(B&B. Gap = 0%). Therefore, these results also imply that GLL and XY L are the im-
provements of the KBL. We observe that, regarding the solution quality, formulation XY L

outperforms the other three formulations, closely followed by formulation GLL.
In table 3 we report the CPU time spent by Cplex to solve the corresponding MILP and

the number of branch and bound nodes. In the first group of instances (sparse instances)
we observe that, regarding the CPU time, formulation IPQAPR − III can compete with
formulations GLL and XY L (IPQAPR − III was designed to exploit the sparsity of the
QAP cost matrix). We also observe that in formulation GLL, and especially in formulation
KBL, Cplex stops because an ‘out of memory’. Those results have been obtained by using
Cplex default parameters (the results obtained by tuning Cplex memory management pa-
rameters have been similar). Therefore, regarding the CPU time and memory requirements,
formulation XY L outperforms the other three formulations.
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In table 4 we present the quality of the LP bound and the CPU time required to obtain
it. Furthermore, we compute the LPgap = Opt. Cost−LPcost

Opt. Cost × 100%, where Opt. Cost is the
optimal or best known objective value. In this respect, formulations GLL and XY L clearly
outperform the other two formulations. As proved in Theorem 4.3, KBL always gives the
worst possible gap and formulation IPQAPR− III shows much longer CPU times for dense
instances. Finally, we observe that formulation GLL may obtain slightly tighter bounds than
formulation XY L, as it is the case for the ‘Bur’ group of instances.

6. Concluding Remarks

The main objective of this paper is to analyze the possibility of solving the Quadratic Assign-
ment Problem (QAP) by means of general purpose mixed integer linear programming solvers,
as for example CPLEX. The main conclusion is that for this purpose the Kaufman-Broeckx
family of formulations, especially Xia-Yuan formulation, is the most effective. We have con-
sidered three members in this family. The first member of this family is the Kaufman-Broeckx
linearization (KBL). As it is known, this formulation is the smallest one but very weak in
general. The second member is the Xia-Yuan linearization (XYL), which tightens KBL by
introducing new constraints based on the Gilmore-Lawler constants lij . We have introduced
the third member of the Kaufman-Broeckx family which we have called the Gilmore-Lawler
linearization (GLL).

From a theoretical point of view first, we have proved that the KBL LP bound is always 0,
the worse possible bound obtained by linearization. Second, we have proved that the bound
given by GLL, the new QAP formulation, is stronger than the Gilmore-Lawler bound. Third,
we have proved, that under particular conditions, XYL is stronger than GLL. However, in
general, we cannot say that XYL is stronger than GLL: in Table 2 we have observed that for
the ‘Bur’ instances the GLL LP bound is stronger than the XYL one.

From a numerical point of view, we have compared Kaufman-Broeckx family of formula-
tions to formulation IPQAPR − III, a state of the art formulation used to solve the QAP
with a general purpose MILP. in Table 1 we have observed that the Kaufman-Broeckx family
of formulations has a very reduced size. In Table 2, we have observed that GLL and specially
XYL, obtain very good feasible solutions (the optimality error is under 1% in 70% of the
cases). Compared to other linearizations, the great advantage of GLL and XYL, is that they
have a moderate LP gap (average around 20%) and that the LP solving time is very small
(around 2 seconds) as shown in Table 4. The main drawback of these two formulations,
specially in the case of GLL, is the fast saturation of the branch-and-bound tree (Table 3).
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Table 1. Instances description: DFM stands for ‘Density of the flow matrix’

Ins. n DFM Nb of x
Nb of z Nb of y Nb of constraints

(%)
GLL/KLB/XYL R-IIIa GLL/KLB XYL R-III

Chr18a 18 10.5 324 324 5202 360 684 648

Chr20a 20 9.5 400 400 7220 440 840 800

Chr22a 22 8.7 484 484 9702 528 1012 968

Chr25a 25 7.7 625 625 14400 675 1300 1250

P. ave.b 21 9.1 458 458 9131 501 959 917

Esc16a 16 29.7 256 256 9120 288 544 1248

Esc16b 16 71.9 256 256 22080 288 544 2976

Esc16c 16 39.8 256 256 12240 288 544 1664

Esc32a 32 14.5 1024 1024 73408 1088 2112 4800

Esc32b 32 21.1 1024 1024 107136 1088 2112 6976

Esc32c 32 25.6 1024 1024 129952 1088 2112 8448

P. ave. 24 33.8 640 640 58989 688 1328 4352

Kra30a 30 36.7 900 900 143550 960 1860 9960

Kra30b 30 36.7 900 900 143550 960 1860 9960

Kra32 32 32.2 1024 1024 163680 1088 2112 10624

P. ave. 31 35.2 941 941 150260 1003 1944 10181

Scr12 12 38.9 144 144 3696 168 312 696

Scr15 15 37.3 225 225 8820 255 480 1290

Scr20 20 31.0 400 400 23560 440 840 2520

P. ave. 16 35.7 256 256 12025 288 544 1502

Bur26a 26 77.7 676 676 167050 728 1404 13416

Bur26b 26 77.7 676 676 167050 728 1404 13416

Bur26c 26 74.3 676 676 156000 728 1404 12532

Bur26d 26 74.3 676 676 156000 728 1404 12532

Bur26e 26 68.8 676 676 144950 728 1404 11648

Bur26f 26 68.8 676 676 144950 728 1404 11648

Bur26g 26 78.8 676 676 169650 728 1404 13624

Bur26h 26 78.8 676 676 169650 728 1404 13624

P. ave. 26 74.9 676 676 159413 728 1404 12805

Nug21 21 62.1 441 441 57540 483 924 5796

Nug22 22 63.2 484 484 70686 528 1012 6776

Nug24 24 64.2 576 576 102120 624 1200 8928

Nug25 25 64.0 625 625 120000 675 1300 10050

Nug27 27 63.9 729 729 163566 783 1512 12636

Nug28 28 64.0 784 784 189756 840 1624 14112

Nug30 30 65.1 900 900 254910 960 1860 17640

P. ave. 25 63.8 648 648 136940 699 1347 10848

T. ave.c 24 48.3 620 620 100361 668 1288 7845

aIn these tables, R-III signify IPQAPR-III.
bIn this paper, P. ave. is the abbreviation for partial average.
cT. ave. is the abbreviation for total average.
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Table 2. Quality of the mixed integer linear programming solution

Ins.

Opt. or

(Mixed) ILP

B. known

GLL KBL XYL R-III

B&B/Opt. B&B/Opt. B&B/Opt. B&B/Opt.
Cost Cost

Gap(%)
Cost

Gap(%)
Cost

Gap(%)
Cost

Gap(%)

Chr18a 11098 11098 0/0 12938 83/17 11098 0/0 11098 0/0

Chr20a 2192 2192 0/0 2390 83/9 2192 0/0 2192 0/0

Chr22a 6156 6156 0/0 6732 88/9 6156 0/0 6156 0/0

Chr25a 3796 4162 21/10 5912 97/56 3920 15/3 3796 0/0

P. ave. 5811 5902 5/2 6993 88/23 5842 4/1 5811 0/0

Esc16a 68 68 0/0 68 30/0 68 0/0 68 36/0

Esc16b 292 292 20/0 292 68/0 292 15/0 292 100/0

Esc16c 160 160 41/0 160 81/0 160 34/0 162 78/1

Esc32a 130(B)a 140 72/8 154 96/18 142 72/9 244 100/88

Esc32b 168(B) 204 53/21 200 98/19 168 41/0 400 100/138

Esc32c 642(B) 642 44/0 644 96/εb 642 44/0 716 100/12

P. ave. 243 251 38/5 253 78/6 245 34/2 314 86/40

Kra30a 88900 97460 29/10 96320 100/8 96090 28/8 115560 68/30

Kra30b 91420 94420 26/3 97230 100/6 93950 25/3 112660 67/23

Kra32 88700 98240 31/11 98300 100/11 93000 27/5 119490 70/35

P. ave. 89673 96707 29/8 97283 100/9 94347 27/5 115903 68/29

Scr12 31410 31410 0/0 31410 0/0 31410 0/0 31410 0/0

Scr15 51140 51140 0/0 54734 43/7 51140 0/0 51140 0/0

Scr20 110030 114272 20/4 119452 90/9 110030 16/0 118760 24/8

P. ave. 64193 65607 7/1 68532 44/5 64193 5/0 67103 8/3

Bur26a 5426670 5435370 2/ε 5435737 99/ε 5434439 2/ε 0 100/100

Bur26b 3817852 3827657 3/ε 3824650 99/ε 3828027 3/ε 4171639 12/9

Bur26c 5426795 5428356 2/ε 5428356 99/ε 5427052 2/ε 5802498 9/7

Bur26d 3821225 3821784 2/ε 3835732 100/ε 3821731 3/ε 0 100/100

Bur26e 5386879 5387166 1/ε 5400754 99/ε 5388552 1/ε 0 100/100

Bur26f 3782044 3782747 2/ε 3797282 99/ε 3782623 2/ε 0 100/100

Bur26g 10117172 10119059 1/ε 10117573 96/ε 10118719 1/ε 0 100/100

Bur26h 7098658 7099924 1/ε 7099097 98/ε 7098905 1/ε 7242138 5/2

P. ave. 5609662 5612758 2/ε 5617398 98/ε 5612506 2/ε 2152034 66/65

Nug21 2438 2522 25/3 2554 93/5 2476 23/2 2876 63/18

Nug22 3596 3716 31/3 3728 94/4 3632 29/1 4068 71/13

Nug24 3488 3640 25/4 3712 95/6 3526 23/1 4454 68/28

Nug25 3744 3890 25/4 3936 95/5 3760 23/ε 4662 67/25

Nug27 5234 5510 32/5 5602 97/7 5402 31/3 7180 75/37

Nug28 5166 5522 30/7 5510 96/7 5264 27/2 7254 74/40

Nug30 6124 6432 29/5 6470 98/6 6264 27/2 8038 72/31

P. ave. 4256 4462 28/5 4502 95/6 4332 26/2 5505 70/27

T. ave. 1464303 1465979 18/3 1467665 87/7 1465511 17/1 575127 57/34

aB means the value is the best known solution.
bε means that the corresponding value is less than 0.5.
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Table 3. Cplex CPU time and number of branch and bound nodes

Ins.
Cplex Time (Sec.) Nb of Nodes (×103)

GLL KBL XYL R-III GLL KBL XYL R-III

Chr18a 410 2806(M)a 391 7 486 2344 251 0.071

Chr20a 29 4134(M) 126 29 12 1722 36 0.413

Chr22a 162 4272(M) 207 21 108 999 86 0.230

Chr25a 1586(M) 2790(M) 5869(M) 274 858 656 1639 5.164

P. ave. 547 3500 1648 83 366 1139 503 0.712

Esc16a 1366 2955(M) 827 14400(*)b 2905 6154 1158 155.689

Esc16b 8033(M) 6879(M) 13197(M) 14400(*) 4098 3549 6940 1.590

Esc16c 3577(M) 3092(M) 5086(M) 14400(*) 3993 3893 4204 55.170

Esc32a 14400(*) 9976(M) 14400(*) 14400(*) 975 1153 661 0.140

Esc32b 11437(M) 9395(M) 14400(*) 14400(*) 1169 1171 707 0.017

Esc32c 14400(*) 7025(M) 14400(*) 14400(*) 988 1168 598 0.031

P. ave. 8869 6554 10385 14400(*) 2354 2848 2378 38.768

Kra30a 5918(M) 9632(M) 9429(M) 14400(*) 449 511 559 0.043

Kra30b 6482(M) 10053(M) 14400(*) 14400(*) 454 520 538 0.029

Kra32 7920(M) 10913(M) 14400(*) 14400(*) 420 503 353 0.025

P. ave. 6773 10199 12743 14400(*) 441 511 483 0.017

Scr12 8 207 10 107 16 475 14 3.791

Scr15 252 2408(M) 310 1387 298 2276 251 10.408

Scr20 2090 3203 6369 14400(*) 1148 1212 1403 18.259

P. ave. 783 1939 2230 5298 487 1321 556 9.858

Bur26a 14400(*) 14400(*) 14400(*) 14400(*) 749 900 618 0.001

Bur26b 14400(*) 14400(*) 14400(*) 14400(*) 673 1071 619 0.001

Bur26c 14400(*) 14400(*) 14400(*) 14400(*) 807 1142 781 0.001

Bur26d 14400(*) 14400(*) 14400(*) 14400(*) 662 1067 636 0.001

Bur26e 14400(*) 14400(*) 14400(*) 14400(*) 859 1448 790 0.001

Bur26f 14400(*) 14400(*) 14400(*) 14400(*) 711 1505 828 -

Bur26g 14400(*) 14400(*) 14400(*) 14400(*) 756 864 939 0.001

Bur26h 14400(*) 14400(*) 14400(*) 14400(*) 847 822 626 0.002

P. ave. 14400(*) 14400(*) 14400(*) 14400(*) 758 1102 729 0.001

Nug21 6199(M) 4622(M) 5816(M) 14400(*) 1732 1018 1451 0.511

Nug22 4374(M) 4937(M) 14400(*) 14400(*) 874 931 1345 0.236

Nug24 4155(M) 5648(M) 14400(*) 14400(*) 665 714 1070 0.055

Nug25 4739(M) 6527(M) 14400(*) 14400(*) 610 653 718 0.015

Nug27 6516(M) 8190(M) 14400(*) 14400(*) 511 566 614 0.004

Nug28 6931(M) 9262(M) 14400(*) 14400(*) 478 515 511 0.003

Nug30 11304(M) 11529(M) 14400(*) 14400(*) 413 452 370 0.001

P. ave. 6317 7245 13174 14400(*) 755 692 868 0.118

T. ave. 7661 8247 10362 11672 959 1354 1010 8.397

aBecause of out of memory, Cplex stopped before the CPU time limit was reached.
bThe CPU time limit, 14400 seconds, was reached.
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Table 4. Quality of the LP bound

Linear relaxation

Ins.

GLL KBL XYL R-III LP CPU Time (Sec.)

LPcost
LPgap

LPcost
LPgap

LPcost
LPgap

LPcost
LPgap

GLL KBL XYL R-III
(%) (%) (%) (%)

Chr18a 6885 38 0 100 6885 38 9515 14 εa 1 1 ε

Chr20a 2150 2 0 100 2150 2 2156 2 ε ε 1 ε

Chr22a 5927 4 0 100 5927 4 5994 3 ε ε 1 1

Chr25a 2787 27 0 100 2787 27 3272 14 ε ε 1 1

P. ave. 4437 18 0 100 4437 18 5234 8 ε ε 1 1

Esc16a 38 44 0 100 38 44 0 100 1 1 ε 1

Esc16b 220 25 0 100 220 25 0 100 1 1 ε 6

Esc16c 83 48 0 100 83 48 0 100 1 1 ε 2

Esc32a 35 73 0 100 35 73 0 100 1 1 ε 94

Esc32b 96 43 0 100 96 43 0 100 1 1 1 286

Esc32c 350 45 0 100 350 45 0 100 1 1 1 403

P. ave. 137 46 0 100 137 46 0 100 1 1 ε 132

Kra30a 68360 23 0 100 68360 23 36864 59 1 1 2 535

Kra30b 69065 24 0 100 69065 24 36700 60 1 1 3 323

Kra32 67390 24 0 100 67390 24 36400 59 1 ε 3 381

P. ave. 68272 24 0 100 68272 24 36655 59 1 1 3 413

Scr12 27858 11 0 100 27858 11 25474 19 ε ε ε ε

Scr15 44737 13 0 100 44737 13 40026 22 ε ε ε 2

Scr20 86766 21 0 100 86766 21 75420 31 1 ε ε 7

P. ave. 53120 15 0 100 53120 15 46973 24 ε ε ε 3

Bur26a 5315337 2 0 100 5315268 2 5288658 3 1 ε 2 2495

Bur26b 3714887 3 0 100 3714819 3 3692082 3 1 ε 4 3592

Bur26c 5312148 2 0 100 5312146 2 5262370 3 1 ε 4 3916

Bur26d 3711824 3 0 100 3711820 3 3673730 4 1 ε 3 2625

Bur26e 5307278 1 0 100 5307214 1 5272546 2 1 ε 4 2265

Bur26f 3707055 2 0 100 3707002 2 3680834 3 1 ε 3 1886

Bur26g 9978615 1 0 100 9978473 1 9905912 2 1 1 3 1445

Bur26h 6973656 2 0 100 6973477 2 6915448 3 1 1 3 2682

P. ave. 5502600 2 0 100 5502527 2 5461448 3 1 ε 3 2613

Nug21 1833 25 0 100 1833 25 1054 57 ε 1 1 113

Nug22 2483 31 0 100 2483 31 1188 67 ε 1 1 95

Nug24 2676 23 0 100 2676 23 1430 59 ε 1 1 251

Nug25 2870 23 0 100 2870 23 1532 59 ε 1 2 536

Nug27 3701 29 0 100 3701 29 1819 65 ε 1 1 1688

Nug28 3786 27 0 100 3786 27 1890 63 ε 1 2 992

Nug30 4539 26 0 100 4539 26 2218 64 1 1 4 1934

P. ave. 3127 26 0 100 3127 26 1590 62 ε 1 2 801

T. ave. 1433079 21 0 100 1433060 21 1418533 43 1 ε 2 921

aε means that the corresponding value is less than 0.5.
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