
A conjugate Rosen’s gradient projection method with
global line search for piecewise linear optimization∗

C. Beltran-Royo†

July 18, 2005

Abstract

The Kelley cutting plane method is one of the methods commonly used to op-
timize the dual function in the Lagrangian relaxation scheme. Usually the Kelley
cutting plane method uses the simplex method as the optimization engine. It is well
known that the simplex method leaves the current vertex, follows an ascending edge
and stops at the nearest vertex. What would happen if one would continue the line
search up to the best point instead? As a possible answer, we propose theface sim-
plex method, which freely explores the polyhedral surface by following the Rosen’s
gradient projection combined with aglobal line search on the whole surface. Fur-
thermore, to avoid the zig-zagging of the gradient projection, we propose a conjugate
gradient version of the face simplex method. We have implemented this method in
Matlab. This implementation clearly outperforms basic Matlab implementations of
the simplex method. In the case of state-of-the-art simplex implementations in C,
our Matlab implementation is only competitive for the case of many cutting planes.

Keywords: Linear programming, Kelley cutting plane method, simplex method,
Rosen’s gradient projection, conjugate gradient.

1 Introduction

The objective of this paper is to explore the computational performance of theface simplex (FS)
method as a procedure to maximize an unconstrainedpiecewise linear concave (PLC) function,
in the framework of the Kelley cutting plane method [14]. In the remaining of the paper cutting
plane method will refer to the Kelley cutting plane method. Our purpose is not to compare the
cutting plane method, to other methods used to maximize the Lagrangian dual function as for
example: bundle methods [12], ACCPM (analytic center cutting plane method) [1], subgradient
methods [21], etc. Instead, we are interested in comparing two optimization tools to be used
within the cutting plane framework: the simplex and the FS method.

PLC functions are nondifferentiable and arise in the frame of the cutting plane method used
for example to maximize the (Lagrangian) dual function [4]. The dual function is concave and

∗This work was partially supported by Logilab, HEC, University of Geneva and the Spanish government, MCYT
subsidy dpi2002-03330.

†cesar.beltran@hec.unige.ch, Logilab, HEC, University of Geneva, Switzerland.

1

very often not explicitly known. For this reason, first order information of the dual function
(cutting planes) is gathered by means of black-box procedures also called oracles. The cumu-
lated set of cutting planes constitutes a PLC outer approximation to the unknown dual function.
At each cutting plane iteration one maximizes and improves this PLC approximation to the dual
function.

The FS method is an alternative to the simplex method to maximize a PLC function. It has
two inherent advantages: First, the FS method does not need the expensive initialization of the
simplex method (to find an initial vertex). Second, in the case of a PLC unconstrained function,
it may happen that there is no optimal vertex. In contrast with the FS method, the simplex
method simply will either not be able to optimize such a function or will need to bound the
variables in an artificial way, if possible.

It is well known that the simplex method at the current vertex takes an ascending edge and
stops at the other vertex of the edge.Question I: What would happen if instead of stopping the
line search at the second vertex, one continues the line search on the whole PLC surface up to
the best point? Firstly, we would obtain a point at least as good as the one given by the simplex
method in terms of objective value. Secondly, most probably the next iterate would not be a
vertex any more and therefore the ascending edge direction proposed by the simplex method
would not exist at this point. In this situation, the FS method proposes to follow the Rosen’s
gradient projection direction [19].

However, while the Rosen’s gradient projection method performs alocal line search (within
the current face of the associated polyhedron), the FS method performs aglobal line search on
the whole polyhedral surface. Both simplex and FS method use the Rosen’s gradient projection
as the feasible direction. They differ on the line search. In fact, the simplex method has the same
behavior as the Rosen’s gradient projection method started at a vertex (except for streamlining
the linear algebra) [4].

Numerous gradient-like methods have been proposed to solve linear programs. In fact they
appeared at the same time as the simplex method [5]. Later references are the Zoutendijk’s
method of feasible directions [25], the already mentioned Rosen’s projected gradient method
and the constrained gradient method [15], among others. More recently the steepest descent
gravitational method has been proposed [6].

Two main aspects determine a gradient projection method. The direction search and the line
search. Regarding the direction search, we also encounter two principal approaches: projection
of the gradient on the entire polyhedral surface, not to be mistaken with the projection of the
gradient on the current face (here we are assuming than all the problem constraints are linear).
We will use the termsgradient projection for the first case andRosen’s gradient projection for
the second one. Regarding the line search, we also encounter two principal approaches: line
search on the current face and line search on the whole polyhedral surface. We will use the
termslocal line search andglobal line search, respectively.

The gradient projection method has guaranteed convergence for both local and global line
search. But, it requires the solving of a demanding quadratic programming problem in order to
project the gradient on the constraint surface. Closely related to the gradient projection, there is
the steepest ascent method [12], which also requires to solve a quadratic programming problem
at each iteration. It has guaranteed convergence only for local line search. If one wishes to
perform long steps (global line search) along anapproximate steepest ascent, one has to use an
outer approximate subdifferential instead of the pure subdifferential [18].

2

In contrast, the computation of the Rosen’s gradient projection is far less demanding since
it only requires the product of the gradient by a projection matrix [4]. In this case we have the
steepest ascenton the current face. In [7], the Rosen’s gradient projection is used in combination
with local line search to solve the uncapacitated facility location problem. The global line search
combined with the gradient projection has been used in [10] to solve the graph partitioning
problem. To our knowledge the combination of the Rosen’s gradient projection with a global
line search has never been used. The FS method fills this gap and constitutes a possible answer
to above Question I.

A second issue addressed in this paper is the zig-zagging inherent to gradient like methods.
In the differentiable case the zig-zagging is addressed by the conjugate gradient or equivalently,
by the partan method [16]. Here we adapt to the case of a PLC function, the partan method.
In our nondifferentiable problem the partan method is used only as a strategy to deflect the
projected gradient, in contrast with the differentiable case where some conjugacy requirement
is enforced. Conjugate subgradient methods have already been used toapproximately solve
nondifferentiable problems [23, 8]. Here, the partan FS method will compute anexact optimum
of the PLC function.

This paper is organized as follows. In section 2 we state the PLC problem and associated
notation. In section 3 the FS method is introduced. The global line search by the radar method
is presented in section 4. A short discussion on the convergence of the FS method is presented
in section 5. The partan FS method is introduced in section 6. Finally the numerical tests and
conclusions can be found in sections 7 and 8, respectively.

2 Statement of the problem and notation

In the cutting plane method we generate a set of hyperplanes (cuts){πj ≡ z = s′jy+bj}j∈J with
J = {1, . . . ,m} whose lower envelope describes a piecewise linear concave (PLC) function:

F (y) = min{Fj(y) | j ∈ J},

whereFj(y) = s′jy + bj .

At each iteration of the cutting plane method one maximizesF (we call it thePLC problem):

max
y∈Rn−1

F (y). (1)

This problem can be rewritten as:

z∗ = max
(y,z)∈Rn

{z | z ≤ s′jy + bj , j ∈ J}. (2)

By definingx = (y, z) ∈ Rn−1 × R1, aj = (−sj , 1) andG(x) = z, the PLC problem is
equivalent to:

maxx∈Rn{G(x) | a′jx ≤ bj , j ∈ J} =
maxx∈Rn{G(x) | Ax ≤ b}. (3)

Therefore the PLC can be seen as the unrestricted maximization of the (nonsmooth) PLC
functionF (y) in they-space (formulation (1)) or as the constrained maximization of the (smooth)
linear functionG(x) in the enhancedx-space (formulation (3)).

3

The notation is as follows:

αk denotes thekth term of the sequence{αk},

(α)k to write a power we use parenthesis,

xi ith component of vectorx,

x = (y, z) ∈ Rn−1 ×R1, partition ofx into ground variables y andepigraph variable z,

ProjE(·) Orthogonal projection onto the spaceE,

Projy(·) Orthogonal projection onto the firstn− 1 coordinate space, e.g., Projy(x) = y,

gk = ∇G(xk),

en = (0, . . . , 0, 1) nth canonical vector ofRn ,

J(x) = {j ∈ J | a′jx = bj} active index-set associated to the active constraints atx,

Jk = J(xk),

Jk \ h = Jk \ {h} set difference,

AJ sub matrix ofA with rows indexed byJ,

Ak = AJk ,

bk = bJk ,

Sk = {x ∈ Rn | Akx = bk} active linear manifold atxk,

Ek = {x ∈ Rn | Akx = 0} vector space associated toSk,

Sk
y = Projy(S

k),

Ek
y = Projy(E

k),

X = {x ∈ Rn | Ax ≤ b},

FS Face simplex,

PLC Piecewise linear concave.

Assumption 1: {aj}j∈J(x) is a set of independent vectors for anyx ∈ Rn.

Assumption 2: The PLC problem is bounded (z∗ < ∞).

4

3 The face simplex method

The face simplex (FS) method is intended to solve the PLC problem (3) and ‘only’ differs from
the Rosen’s gradient projection method in the scope of the line search (see Remark 1 c)). The
FS method can be summarized as follows:

Face simplex method:

Step 0. Initialization: Takex0 ∈ X such thatJ(x0) 6= ∅, ε > 0 and setk = 0.

Step 1. Compute the Rosen’s gradient projection:

Jk = J(xk),

P k = I −Ak ′(AkAk ′)−1Ak,

uk
j = (AkAk ′)−1Akgk, j ∈ Jk,

uk
h = min{uk

j | j ∈ Jk}.

If ‖P kgk‖ < ε anduk
h ≥ 0 then stop (in this casexk is a Karush-Kunhn-Tucker point),

else, choose

dk =
{

P kgk if ‖P kgk‖ > uk
hε,

PJk\hgk if ‖P kgk‖ ≤ uk
hε,

(4)

wherePJk\h = I −A′
Jk\h(AJk\hA′

Jk\h)−1AJk\h.

Step 2. Global line search along dk
y = Projy(d

k):

xk+1 = (yk+1, zk+1) = arg max z
s.t. (y, z) ∈ X ∩Hk,

(5)

where
Hk = xk + span{dk

y , en}.

Setk = k + 1 and go back to Step 1.

Remark 1 a) Note thatgk = (0, . . . , 0, 1) = en for all x ∈ Rn. Then in the previous algorithm
gk = en for all k.

b) The FS method corresponds to the gradient projection method of Rosen with an enlarged
linear manifold at Step 2. That is, in the Rosen’s gradient projection method, the line search is
restricted to the one dimensional linear manifold̃Hk = xk + span{dk} instead ofHk, which is
two dimensional.

c) The Rosen’s gradient projectiondk corresponds to the steepest ascend directionwithin
F k, the face associated toxk in the polyhedronX (except whenF k is a vertex ofX). In a
related method, the steepest ascend method, one computes the (global) steepest ascend direction
at xk, which may be different formdk.

5

4 Global line search by the radar method

In this section we focus on the solution of the global line search (5). This problem is equivalent
to maximizing a one dimensional PLC functionf(α) since the aim of (5) is to find a highest
point within a vertical two dimensional slice of the polyhedron X. Furthermoref(α) is the lower
envelope of the lines{rj(α)}j∈J , whererj(α) = mjα + nj is the equation of the intersection
line of hyperplaneπj with the two dimensional linear manifoldHk. That is

f(α) = min{rj(α) | j ∈ J}.

The expression formj andnj is given in the following lemma.

Lemma 1 If πj ≡ z = s′jy+bj andHk = xk +span{dk
y , en}, with xk = (yk, zk) ∈ Rn−1×R,

thenπj ∩Hk defines a line whose equation is:

rj(α) = mjα + nj

with mj = s′jd
k
y andnj = s′jy

k + bj .

Proof: Let {(y(α), z(α)) | α ∈ R} be the lineπj ∩ Hk. Sinceπj ≡ z = s′jy + bj and
y(α) = yk + αdk

y , then

z(α) = s′jy(α) + bj = αs′jd
k
y + s′jy

k + bj .

The result follows from the fact thatrj(α) is equivalent toz(α).

The global line search (5) can be then reformulated as:

α∗ = argmax
α∈R

f(α) (6)

Without loss of generality, we assume thatα∗ is the smallest optimal point in case of multiple
optima. Furthermore,f is parameterized such thatf(0) = 0 andα∗ > 0. The graph off in
the interval of interestI = [0, α∗] is the union ofr line segments that join the breaking points
pi = (ai, bi) ∈ R2, i = 1, . . . , r. Furthermore,p0 = (0, 0) andpr = (α∗, f(α∗)). The interval
I is partitioned into

I1 ∪ I2 ∪ . . . ∪ Ir = [a0, a1[∪[a1, a2[∪ . . . ∪ [ar−1, ar].

The pointar is characterized as the only point where the left derivative off is strictly positive
and the right derivative is negative, i.e.,f−(ar) > 0 andf+(ar) ≤ 0. This property could be
used to solve the global line search: Start ata0 = 0, then iterate from breaking point to breaking
point up to the first breaking point with a change of sign in the lateral derivatives (next breaking
point method).

The number of iterations in the next breaking point method equals the number of breaking
points. To avoid the potentially large number of iterations of the next breaking point method, we
use an improved version of theradar method. Before of introducing the radar method we need
to partition the set of lines that definef . We consideractive lines in [0,+∞[indexed byJa, that
is, lines that intersect with the graph off in more than one point within the interval[0,+∞[.

6

Analogously, we considerinactive lines indexed byJi. We also considerstrictly positive lines
indexed byJ+, that is, lines with strictly positive slope. Analogously,negative lines indexed by
J− (negative lines may have null slope). By crossing these two attributes, we partitionJ into
four sets :

J = J+ ∪ J− = J+
a ∪ J+

i ∪ J−
a ∪ J−

i .

Since in[0, α∗] we haver breaking points, we will haver segments[pi, pi+1[(i = 0, . . . , r−
1). Also, considering that these segments form the graph of a concave function, their slopes will
form a decreasing sequence:m1 > m2 > . . . > mr > 0.

At iterationk, the radar method approximatesf(α) by only two of its defining lines:rk(α),
andsk(α): rk is the active line atαk (the one with the lowest slope ifαk corresponds to a
breaking point) andsk is thestopping line, i.e., the first negative line that intersects withrk as
α increases . The intersection point ofrk andsk is the point(αk+1, r(αk+1)), which gives the
next radar iterateαk+1 and an upper bound to the optimal value (r(αk+1) ≥ f(α∗)). See [2]
for more details. The radar method can be summarized as follows:

Radar method:

Step 1. Initialization: Takeα0 = 0 and setk = 0.

Step 2. Compute next radar iterate:

αk+1 = min
{
−mk −mj

nk − nj
| j ∈ J−

}
. (7)

Step 3. Stopping criterion: If αk+1 = α
k
, then stop, sinceαk+1 maximizesf(α). Else, set

k = k + 1 and go back to Step 1.

Remark 2 a) A single iteration version of the radar method was first used in [2], thus obtaining
a suboptimal solution of the global line search. In this paper, the aim of the radar method is to
compute an optimal solution of the global line search.

b) In [3] it is seen that in order to obtain anε-optimum for the the global line search, i.e., an
αε such that|αε − α∗| < ε, the number of radar iterations does not depend on the number of
breaking points, but on the ratio between the smallest and largest slopes of the positive active
lines. That is, for allk:

|αk − α∗| <
(

1− mr

m1

)k

|α0 − α∗|’ . (8)

5 Convergence proof inR3

The Rosen’s gradient projection method for linear constraints was first published in 1960 with-
out a convergence proof. The mathematical programming community had to wait until 1985 to
see the first convergence proof but only restricted to dimension 3 [24]. Finally, in 1989 Du and
Zhang [9] gave a general convergence proof.

Similarly, for the FS method we have not yet found a general convergence proof but only a
convergence proof restricted to dimension 3. This simple result encouraged us to keep searching

7

for a general convergence proof and to empirically test the FS method. We wish to point out,
that in contrast with the FS method, the steepest ascent method combined with global line search
may fail to converge to a KKT point even for dimension 3 when maximizing a PLC function,
[13].

The following lemma will be used in the proof of the convergence theorem (see [3] for a
proof).

Lemma 2 (radar method)

a) If αk ∈ [ai, ai+1[thenαk+1 ∈ [ai+1, α
∗].

b) f(αk+1) > f(α
k
) for k = 0, 1, . . .

c) G(xk+1) = f(α∗) > f(0) = G(x
k
) for k = 0, 1, . . .

Theorem 1 The FS method applied to solve the PLC problem inR3 converges to an optimal
point or detects unboundness ofG(x) after a finite number of iterations.

Proof: The proof is similar to the convergence proof of the simplex method. Now instead
of exploring vertices, the FS method explores vertices and edges. If the polyhedral setX is
included inR3 then its faces are points, edges or two-dimensional faces. In the radar method,
xk+1 is defined by the intersection of two or more lines which correspond to the intersection of
two or more hyperplanes. This means thatxk+1 is a vertex or lays on an edge. By Lemma 2
c) vertices can only be visited once. Again, by Lemma 2 a)-b) an edge can only be visited
once. Given that the number of vertices and edges is finite, the FS method either will attain a
maximum after a finite number of iterations or will encounter an unbounded edge.

6 Avoiding the zig-zagging

Since the FS method is a gradient type method, it can suffer from zig-zagging specially when
the graph ofF has an ‘elongated’ form. To overcome the zig-zagging, one can use the partan
(parallel tangents) method [20], a simple method that is equivalent to the conjugate gradient
method in the case of a quadratic function. In this section we adapt the partan method to the
case of a PLC function. Note that, in our non differentiable problem, the partan method is only
used as a strategy to deflect the projected gradient, in contrast with the differentiable case where
some conjugacy requirement is enforced.

The pure partan method combined with the FS method is as follows. Note that we work on
the ground space variablesy ∈ Rn−1. Start at an arbitraryy0 and computey1 by the FS method.
Then at each iterationk ≥ 1 two steps are performed: First, from the pointyk, compute the
intermediate pointyk+ 1

2 by the FS method. Second, from the pointyk+ 1
2 , computeyk+1 as the

best point in the lineL = yk+ 1
2 + span{yk+ 1

2 − yk−1}. This double step process continues for
n− 1 iterations, and then a new partan cycle is restarted with a simple FS step.

Definition 1 Let us define the intervalI(δ) =]−δ, δ[. Given a functionF (y) : Rn−1 → R, a
pointy, a directiond and a lineL(y, d) = {y + αd | α ∈ R}, we say thatL is of class:

8

y

y*

a

L(y, a)

Figure 1:

L0, if there existδ > 0 such thatF (y + αd) = F (y) for all α ∈ I(δ).

L+, if there existδ > 0 such thatF (y + αd) > F (y) for someα ∈ I(δ).

L−, if there existδ > 0 such thatF (y + αd) ≤ F (y) for all α ∈ I(δ) andF (y + αd) is
not constant inI(δ).

Example:
In Fig. 1, we have the level sets of a PLC function that attains its maximum aty∗. At the pointy
we parameterize all the possible search lines by the anglea, i.e., the set of possible search lines
is {L(y, a) : a ∈ −[0, π[}. We encounter two types of lines: a) Lines of typeL−: Along these
lines any movement fromy does not improve the objective function (a ∈ −[0, π/2]). b) Lines
of typeL+: Along these lines we can improve our objective function (a ∈ −]π/2, π[).

In next proposition we see that, all the lines in Projy(S
k), the y-projection of the active

linear manifold at anyxk, are of typeL0 or L+, and thus they are good candidates for search
line spaces.

Proposition 1 If L(yk, dy) is a line included inSk
y = Projy(S

k), then it is of classL0 or L+.

Proof: By definition of active set, there exitsδ > 0 such thatJ(xk + αd) = J(xk) for all
α ∈ I(δ) =]−δ, δ[and for alld ∈ Dk = {d ∈ Ek | ‖d‖ = 1}. Then considering that
d = (dy, dz), xk = (yk, zk), we have:

xk + αd ∈ Sk,

yk + αdy ∈ Sk
y ,

F (yk + αdy) = zk + αdz,

for all α ∈ I(δ) and for alld ∈ Dk.

If dz = 0, thenF (yk + αdy) = zk for all α ∈ I(δ), that is,L(yk, dy) is of typeL0.

If dz 6= 0, thenF (yk + αdy) = zk + αdz > zk either for allα ∈]0, δ[or for all α ∈]−δ, 0[.
In the two casesL(yk, dy) is of typeL+.

9

In view of the previous example and proposition, when using the partan algorithm, atyk+ 1
2

we will restrict our line search along lines withinS
k+ 1

2
y , they-projection of the active linear

manifold atyk+ 1
2 , since we know that they are lines of classL0 or L+. This is equivalent to

using search directions fromE
k+ 1

2
y = Projy(E

k+ 1
2). Therefore, instead of using the pure partan

search directionyk+ 1
2 − yk−1, we will use its projection ontoE

k+ 1
2

y , i.e., atyk+ 1
2 we will use

Proj
E

k+1
2

y

(yk+ 1
2 − yk−1) as the search direction. Let us see how to compute it.

Proposition 2 If

d = (dy, dz) ∈ Rn−1 × R,

A = [Ay Az] ∈ Rm×(n−1) × Rm×1,

Ey = {dy ∈ Rn−1 | Aydy + Azdz = 0},
d̃ ∈ Rn−1,

Then
ProjEy

(d̃) = d∗y =
[
I −Ay

′(AyAy
′)−1Ay

]
d̃−

[
Ay

′(AyAy
′)−1Az

]
d∗z, (9)

where

d∗z =
−1

Az
′(AyAy

′)−1Az

[
Az

′(AyAy
′)−1Ay

]
d̃. (10)

Proof: By definition

ProjEy
(d̃) = d∗y = argmin

dy

1
2
‖dy − d̃‖2 (11)

s.t. Aydy + Azdz = 0,

whose first order conditions are:

dy − d̃ + Ay
′λ = 0 (12)

Az
′λ = 0 (13)

Aydy + Azdz = 0. (14)

The solution to this system(d∗y, d
∗
z, λ

∗) can be computed as follows. From (12) and (14) we
obtain that:

λ∗ =
(
AyAy

′)−1
Ayd̃ +

(
AyAy

′)−1
Azd

∗
z. (15)

Pre-multiplying (15) byAz
′ and considering (13) we have that

d∗z =
−1

Az
′(AyAy

′)−1Az

[
Az

′(AyAy
′)−1Ay

]
d̃.

Finally, by using (15) in (12) we obtain that

d∗y =
[
I −Ay

′(AyAy
′)−1Ay

]
d̃−

[
Ay

′(AyAy
′)−1Az

]
d∗z.

In the following proposition we see how we can obtain an ascent feasible direction ifd∗z 6= 0.

10

Proposition 3 a) In the previous proposition,(d∗y, d
∗
z) is an ascent direction if and only ifd∗z >

0.

b) If d∗z 6= 0, then for anyγ > 0 we have thatd(γ) = (γ/d∗z)(d
∗
y, d

∗
z) is an ascent feasible

direction.

Proof: a) For anyx we have,

∇G(x)
(

d∗y
d∗z

)
= en

(
d∗y
d∗z

)
= d∗z.

b) d(γ) is an ascent direction since∇G(x)d(γ) = γ > 0. It is feasible since by (14)

A d(γ) =
γ

d∗z
[Ay Az]

(
d∗y
d∗z

)
=

γ

d∗z

(
Ayd

∗
y + Azd

∗
z

)
= 0.

6.1 The partan face simplex method

The above discussion is summarized in the partan face simplex method, which adapts the partan
strategy to the FS method in order to avoid the zig-zagging.

Partan face simplex method:

Step 0. Step 0. Initialization: Takex0 = (y0, z0) ∈ X such thatJ(x0) 6= ∅, ε > 0, γ > 0,
K > 0, and setk = 0.

Step 1. Compute dk, the Rosen’s gradient projection as in (4).

Step 2. Compute xk+ 1
2 = (yk+ 1

2 , zk+ 1
2) by a global line search along Projy(d

k) as in (5).

If k = 0 then setk = k + 1 and go back to Step 1.

Step 3. Compute the Rosen’s partan projection (d∗y, d
∗
z):

d̃ = yk+ 1
2 − yk−1,

Ak+ 1
2 is partitioned into[Ay Az],
α = Az

′(AyAy
′)−1Az.

If |α| < ε then setk = 1 and go back to Step 1,
else, compute

v = Ay
′(AyAy

′)−1Az,

d∗z =
−1
α

v′d̃.

If |d∗z| < ε then setk = 1 and go back to Step 1,
else, compute

d∗y =
[
I −Ay

′(AyAy
′)−1Ay

]
d̃− d∗zv. (16)

11

Step 4. Compute xk+1 = (yk+1, zk+1) by a global line search along dy(γ) = (γ/d∗z)d
∗
y:

(yk+1, zk+1) = arg max z

s.t. (y, z) ∈ X ∩Hk+ 1
2 ,

(17)

where
Hk+ 1

2 = xk+ 1
2 + span{dy(γ), en}.

Setk = k + 1. If k > K then setk = 0. Go back to Step 1.

Remark 3 a) Note that in Step 4 we use the ascent directiond(γ) = (γ/d∗z)(d
∗
y, d

∗
z) instead of

(d∗y, d
∗
z). Of course we could use the ascent direction(d∗y, d

∗
z) wheneverd∗z > 0 (or its opposite

if d∗z < 0), but better computational results have been obtained by usingd(γ) with a constant
value forγ (we do not have a clear theoretical explanation for this behavior).

b) Also note that, after the restart procedure at the end of Step 4 (when we setk = 0) a pure
FS iteration will be performed (fork = 0 the partan steps 3 and 4 are not performed). This
restart procedure serves as a spacer step and therefore the convergence of the partan FS method
relies on the convergence of the FS method.

7 Numerical tests

The objective of this section is to compare our prototype of the FS method to the simplex
method. We test the plain version of the FS method (label ‘FS’) and the partan version (label
‘Partan’). We study the influence of three parameters of the PLC problem: size ofA, number of
rows inA and shape of the PLC graph.

The FS prototype has been written in Matlab 7.0 [11]. The main parameter in the FS method
areε, γ andK, which have been set equal to10−6, 1 andn−1, respectively. The FS initial point
has been set equal to0. In our benchmark, we have used the Matlab simplex and the Mosek
simplex [17]. Matlab simplex is a very basic implementation written in Matlab (interpreted lan-
guage). Mosek simplex is a state-of-the-art implementation written in C (compiled language).
For both simplex implementations we have used their default parameters and default starting
point, except for the the stopping tolerance that has been set equal to10−6. All programs have
been run on a PC (Pentium-IV, 2.8 GHz, with 4 Gb of RAM memory) under the Linux operating
system.

We have performed four tests. For each test we display two tables. In the first one we report
the problem description and the optima obtained. In the second one, we report the performance
in terms of number of iterations and CPU time. In each performance table, for each data column
we compute the average. We also compute what is labeled as ’Relative’ which is a normalization
of the average values and is computed as the average value divided by the Mosek average value.

7.1 Influence of the instance size

What is the impact of the instance size (size ofA) for the FS method ? To answer this question,
we solve ten randomly generated instances of the PLC problem (2). For each instance we

12

generate3n random hyperplanes inRn with equation:

πj ≡ z = zj + s′j(y − yj) j = 1, . . . , 3n

wherezj , sj andyj are uniformly distributed in[−100, 100],±[0.1, 10]n−1 and[−100, 100]n−1,
respectively. That is, the constraint matrixA associated to each generated PLC instance has
dimension rows×columns =3n× n.

In this paper all the PLC instances have at leastm = 3n hyperplanes. Our objective was to
restrict our computational experiments to bounded PLC functions and for thism value all the
randomly generated instances resulted to be bounded (for smaller values ofm, sometimes we
obtained unbounded PLC instances).

As we can see in Table 2, the impact of the size ofA is sever for the FS performance. This im-
pact is greatly reduced in the partan version (by a factor greater than 10). The partan FS method
clearly outperforms the Matlab simplex (over 200 times faster).This CPU time difference is re-
markable since the two methods use the same numerical and computational technology: the
computing ofA−1b is done by the Matlab compiled commandA \ b and no basis factoriza-
tion updating is performed in any of the two implementations. The reason for this performance
speed-up is twofold: on the one hand the partan FS method needs, on average, 60% of the Mat-
lab simplex number of iteration. On the other hand, as we can see in Table 3, the number of
active hyperplanes at each partan FS iteration is relatively low, specially for the larger instances.
One of the main computational effort of the FS method is to compute(AkAk ′)−1, which on
average has dimension 28 for the current test (partan version). At each iteration, the simplex
method computesB−1 with dimension equal tom, which in this test is on average 330.

In sharp contrast, the Mosek simplex performs much faster than the three other solvers.
Although the objective of this test is not to compare the two simplex implementation, we wish to
point out three important reasons for this huge difference on the simplex CPU times: a) Matlab
simplex does not perform neither LU factorization of the basis nor its updating: every linear
system of the simplex method is solved from scratch! b) As we mentioned, Matlab simplex
is an interpreted code and Mosek simplex is a compiled one. c) Mosek incorporates many
numerical tricks (e.g. rescaling of the problem) that greatly accelerates the simplex method.

Finally, in Table 3 we observe that the average number of radar iterations is 1 or close to
1. That means that most of the time the active set at the current FS iterate is included in the
active set at the next FS iterate, i.e.J(xk) ⊂ J(xk+1). This observation opens the door to linear
algebra improvements as for example a cheap updating of the projection matrixP k.

7.2 Influence of the number of constraints

It is known than the primal simplex typically requires at most3m iterations (pivots) to attain
optimality [22]. Can we say some thing similar about the FS method? To answer this question,
we solve ten random PLC instances generated as in the previous test, with a fixed dimension
(100) and the number of constraints ranging from 300 to 1200. In Tables 4-5 we report the
results. Regarding the number of iterations: a) Neither FS methods nor the Mosek simplex
seem to depend on the number of constraints. b) Matlab simplex number of iterations strongly
depends on the number of constraints (for this test ‘number of iterations’w 10m). Regarding
the CPU time: a) The FS methods does not seem to depend on the number of constraints. b)
Matlab simplex and Mosek simplex clearly depend on the number of constraints.

13

Table 1:Influence of the instance size: Problem description

Size ofA Optimum

Instance Columns Rows FS Partan Matlab Mosek
plc01 20 60 -1407.645692 -1407.645692 -1407.645692 -1407.645692
plc02 40 120 -1792.810503 -1792.810503 -1792.810503 -1792.810503
plc03 60 180 -1864.664313 -1864.664313 -1864.664313 -1864.664313
plc04 80 240 -2434.437657 -2434.437657 -2434.437657 -2434.437657
plc05 100 300 -2377.648663 -2377.648663 -2377.648663 -2377.648663
plc06 120 360 -3183.970574 -3183.970574 -3183.970574 -3183.970574
plc07 140 420 -3197.949391 -3197.949391 -3197.949391 -3197.949391
plc08 160 480 -3503.452506 -3503.452506 -3503.452506 -3503.452506
plc09 180 540 -3210.295251 -3210.295251 -3210.295251 -3210.295251
plc10 200 600 -3902.402666 -3902.402666 -3902.402666 -3902.402666

Table 2:Influence of the instance size: Performance
Iterations CPU time (sec.)

Instance FS Partan Matlab Mosek FS Partan Matlab Mosek
plc01 32 17 37 31 0.1 0.1 1 0.1
plc02 113 45 308 84 0.1 0.1 13 0.1
plc03 276 88 967 170 0.3 0.2 69 0.2
plc04 5754 124 1413 340 6.9 0.4 250 0.3
plc05 4392 275 2582 501 6.7 1.2 829 0.5
plc06 5391 526 3649 475 11.0 2.6 1733 0.7
plc07 5344 1997 6296 719 14.1 10.7 4488 1.3
plc08 43700 1686 9124 836 208.4 12.7 7947 1.7
plc09 90288 6392 11532 1021 709.4 44.9 15451 2.5
plc10 193000 20253 17215 1027 2850.1 166.0 25490 3.1

Average 34829 3140 5312 520 380.7 23.9 5627 1.1
Relative 67 6 10 1 346.1 21.7 5115 1

14

Table 3:Analysis of FS and partan line searches. ‘Hyperplanes’ = Averaged number
of active hyperplanes per line search. ‘Radar iterations’ = Averaged number of radar
iterations per line search.

Hyperplanes Radar iterations

Instance FS FS Partan Partan FS Partan
plc01 10 50 % 10 50 % 1.00 1.00
plc02 26 66 % 26 66 % 1.00 1.00
plc03 18 30 % 40 67 % 1.04 1.00
plc04 39 49 % 39 49 % 1.00 1.00
plc05 30 30 % 33 33 % 1.06 1.09
plc06 27 23 % 30 25 % 1.10 1.06
plc07 37 26 % 24 17 % 1.07 1.10
plc08 23 15 % 32 20 % 1.11 1.08
plc09 22 12 % 23 13 % 1.11 1.11
plc10 24 12 % 25 13 % 1.10 1.11

Average 26 31 % 28 35 % 1.06 1.05

Table 4:Influence of the number of constraints: Problem description

Size ofA Optimum

Instance Columns Rows FS Partan Matlab Mosek
plc11 100 300 -2583.688468 -2583.688468 -2583.688468 -2583.688468
plc12 100 400 -3364.767472 -3364.767472 -3364.767472 -3364.767472
plc13 100 500 -4106.718236 -4106.718236 -4106.718236 -4106.718236
plc14 100 600 -4055.119693 -4055.119693 -4055.119692 -4055.119692
plc15 100 700 -4858.708681 -4858.708681 -4858.708681 -4858.708681
plc16 100 800 -5393.471774 -5393.471774 -5393.471774 -5393.471774
plc17 100 900 -5573.752855 -5573.752855 -5573.752855 -5573.752855
plc18 100 1000 -5550.919783 -5550.919783 -5550.919783 -5550.919783
plc19 100 1100 -5637.042493 -5637.042493 -5637.042493 -5637.042493
plc20 100 1200 -5562.779705 -5562.779705 -5562.779705 -5562.779705

15

Table 5:Influence of the number of constraints: Performance
Iterations CPU time (sec.)

Instance FS Partan Matlab Mosek FS Partan Matlab Mosek
plc11 3580 341 2931 387 5.5 1.5 842 0.4
plc12 7037 616 3508 467 13.2 2.2 1484 0.6
plc13 2634 496 5014 474 5.4 2.3 3745 0.7
plc14 3750 811 6756 495 8.6 3.8 5914 0.8
plc15 549 191 7026 434 1.5 1.3 8406 0.8
plc16 6837 582 8394 428 19.5 3.3 14146 1.0
plc17 8576 823 9700 439 26.3 4.7 18605 1.0
plc18 9301 148 10811 451 30.9 1.5 63524 1.3
plc19 1843 556 11015 485 6.2 3.7 80226 1.5
plc20 5776 494 11635 438 21.0 3.5 114834 1.5

Average 4988 506 7679 449 13.8 2.8 31173 1.0
Relative 11.1 1.1 17.1 1 13.8 2.8 31173 1

7.3 Influence of the function shape

In the case of a (smooth) quadratic functionq(x) = −1
2x′Qx + b, with Q positive definite and

symmetric, it is seen that the steepest ascent method gives linear convergence with

E(xk+1) ≤
(

Λ− λ

Λ + λ

)2

E(xk), (18)

whereE(x) = (1/2)(x− x∗)′Q(x− x∗) and,Λ andλ are the largest and smallest eigenvalues
of Q, respectively [16]. That is, the more or less ‘elongated’ shape of the graph ofq determines
the speed of convergence of the steepest ascent method. In the FS method applied to the PLC
problem we are maximizing a nonsmooth function by following the steepest ascent on the cur-
rent face. To analyze the influence of the shape of the graph, we solve ten randomly generated
PLC instances, with a fixed dimension (100) and a graph constructed as as follows. Our PLC
functionF is defined by taking a random collection of 300 hyperplanes from the family of tan-
gent hyperplanes to the graph ofq. The definition ofq is based on a diagonal matrixQ defined
by the monotone and equidistant sequence0 < λ1 < λ2 < . . . < λ100. This impliesΛ = λ100

andλ = λ1. Arbitrarily we fix λ = 1/10 and to generate the ten differentq graph shapes (ten
PCL instances) we useΛ = 21/10, 22/10, . . . , 210/10. The expression for the hyperplanes are:

πj ≡ z = q(yj) +∇q(yj)′(y − yj) j = 1, . . . , 300,

with yj uniformly distributed in[−100, 100]n−1.

In Tables 6-7 we report the results (in Table 6 we only use the Mosek simplex optima to
validate the FS optima). In contrast with the smooth case, the graph shape does not seem to
influence the performance of any of the three implementations.

In Tables 8-9 we test the FS method versus the Mosek simplex method in the potentially
advantageous setting for the FS method:λ = Λ and a large number of constraints. Note that,
even if in the previous test the shape of the graph did not have a clear influence on the FS
performance, in theory, for the caseλ = Λ andm = ∞ a single FS iteration would be enough
sinceF will be a copy ofq. For the Matlab simplex we do not report results, since only the first

16

Table 6: Influence of the function shape: Problem description. All instances are of
size rows×columns = 300×100.

Maximum Optimum

Instance Eigenvalue FS Partan Mosek
plc21 2/10 2.2956216726×104 2.2956216726×104 2.2956216726×104

plc22 4/10 3.7530005959×104 3.7530005959×104 3.7530005959×104

plc23 8/10 6.7130365536×104 6.7130365536×104 6.7130365536×104

plc24 16/10 1.2959614351×105 1.2959614351×105 1.2959614351×105

plc25 32/10 2.4991985084×105 2.4991985084×105 2.4991985084×105

plc26 64/10 4.9278816291×105 4.9278816291×105 4.9278816291×105

plc27 128/10 9.6795507723×105 9.6795507723×105 9.6795507723×105

plc28 256/10 1.9246016667×106 1.9246016667×106 1.9246016667×106

plc29 512/10 3.8775769072×106 3.8775769072×106 3.8775769073×106

plc30 1024/10 7.7649034444×106 7.7649034444×106 7.7649034449×106

Table 7:Influence of the function shape: Performance

Iterations CPU time (sec.)

Instance FS Partan Matlab Mosek FS Partan Matlab Mosek
plc21 4776 1064 3829 483 7.0 3.6 360 0.5
plc22 1978 306 3511 380 2.9 1.3 319 0.5
plc23 443 126 4348 410 1.1 0.8 418 0.5
plc24 970 386 4330 523 1.7 1.8 408 0.5
plc25 1701 158 3938 395 2.7 1.3 330 0.4
plc26 1569 382 4102 444 2.7 2.6 344 0.5
plc27 2199 489 3594 441 3.6 3.6 278 0.5
plc28 2212 1045 3579 474 3.7 5.7 291 0.6
plc29 30007 784 3508 332 79.3 4.5 273 0.6
plc30 1020 1971 4707 399 1.9 9.2 401 0.4

Average 4688 671 3945 428 10.7 3.4 342 0.5
Relative 11.0 1.6 9.2 1 21.4 6.8 684 1

two instances were solved in less than105 seconds. For the Mosek simplex method we give
results for the PLC problem (3) and for its equivalent dual formulation (DF):

min
y∈Rm

{b′y | A′y = en, y ≥ 0}.

Again, we encounter an important difference between the smooth and non smooth case. For
a (smooth) quadratic function, by (18), the steepest ascent method will need one single iteration
wheneverλ = Λ. In Tables 9 we observe that many FS iterations may me needed even if the
(nonsmooth) PLC function has been derived from a quadratic function withλ = Λ).

For this particular class of PLC instances we can say that the partan FS method outperforms
the simplex method since the CPU times are similar and the FS prototype is coded in Matlab.
Of course, when using the simplex method, in the case of a large number of constraints a better
choice is to solve the dual formulation.

17

Table 8:Special case: Problem description. For all the cases, the number of columns
is 100 and the maximum eigenvalue 1/10

Size ofA Optimum

Instance Rows FS Partan Mosek Mosek DF
plc31 1000 14022.455231 14022.455231 14022.455231 14022.455235
plc32 2000 13722.010504 13722.010504 13722.010504 13722.011171
plc33 3000 13279.100662 13279.100662 13279.100662 13279.100663
plc34 4000 13187.229932 13187.229932 13187.229932 13187.231032
plc35 5000 13012.686300 13012.686300 13012.686300 13012.686300
plc36 6000 13046.096879 13046.096879 13046.096879 13046.096879
plc37 7000 12945.660286 12945.660286 12945.660286 12945.660287
plc38 8000 12781.721013 12781.721013 12781.721013 12781.721013
plc39 9000 12793.533089 12793.533089 12793.533089 12793.533089
plc40 10000 12885.004213 12885.004213 12885.004213 12885.004213

Table 9:Special case: Performance. DF stands for ‘Dual Formulation’

Iterations CPU time (sec.)

Instance FS Partan Mosek Mosek DF FS Partan Mosek Mosek DF
plc31 1676 275 420 1821 5.3 1.9 1.2 0.9
plc32 4530 319 399 1788 24.1 3.3 2.6 1.4
plc33 8723 324 493 2485 63.4 4.3 4.6 2.2
plc34 2214 235 422 2803 20.8 4.0 6.0 2.7
plc35 5000 195 382 2304 55.4 4.2 7.2 2.7
plc36 3992 897 543 2518 54.1 21.9 9.4 3.0
plc37 2811 143 513 2948 43.2 3.7 11.0 3.5
plc38 3612 382 584 2547 64.8 11.4 13.3 3.5
plc39 10144 460 453 2621 199.0 15.6 13.1 3.7
plc40 591 872 492 2647 13.2 35.0 15.7 4.0

Average 4329 410 470 2448 54.3 10.6 8.4 2.8
Relative 9.2 0.9 1 5.2 6.5 1.3 1 0.3

18

8 Conclusions

In the framework of the Kelley cutting plane method, the face simplex (FS) method is an alter-
native to the simplex method to maximize a piecewise linear concave (PLC) function. It is well
known that the simplex method at the current vertex takes an ascending edge and stops at the
other vertex of the edge. In this paper we address the question of what would happen if instead
of stopping the line search at the second vertex, one continues the line search on the whole PLC
surface up to the best point? The FS method gives a plausible answer.The FS method freely
explores the polyhedral surface by following the Rosen’s gradient projection combined with a
global line search on the whole surface.

From a theoretical point of view, we have therefore enlarged the Rosen’s gradient projection
steps by using the radar method to perform a global line search. The other theoretical contribu-
tion has been to adapt the partan method, a conjugate gradient technique, to the case of a PLC
function (partan face simplex method). Roughly speaking, this partan version has reduced the
number of the plain FS iterations by a factor of 10, by avoiding zig-zagging. The CPU time im-
proved by a factor of 5 since each partan FS iteration amounts to two plain FS iterations in terms
of computational work. Finally, although we have proved the convergence of the FS method for
dimension 3, convergence for the general case remains an open question.

From a computational point of view, we have compared the FS Matlab prototypes to two
representative implementations of the simplex method. Matlab simplex, a very basic interpreted
implementation and Mosek simplex, a state-of-the-art compiled implementation. Compared
to Matlab simplex, the performance of the partan FS prototype is very competitive, mainly
due to two reasons: Matlab simplex does not use any LU basis factorization/updating. On the
other hand, in the FS method the computational effort is low since only a small fraction of the
constraints is considered at each iteration. Compared to the Mosek simplex method, the partan
FS prototype does not seem competitive except for the case of a large number of constraints.
However, we think that in the FS method there is still room for numerical improvements.

Even if the FS method does not seem to outperform the simplex method, it has two inherent
advantages compared to the simplex method: First, the FS method does not need the expensive
initialization of the simplex method (to find an initial vertex). Second, in the case of a PLC
unconstrained function, it may happen that an optimal vertex does not exist. In contrast with the
FS method, the simplex method simply will not be able to optimize such a function or will need
to bound the variables in an artificial way, if it made sense to do it.

Acknowledgment

The author is thankful to Jean-Philippe Vial, Alain Haurie and Nidhi Sawhney for their
comments and support at Logilab, HEC, University of Geneva.

References

[1] F. Baboneau, C. Beltran, A. B. Haurie, C. Tadonki, and J.-Ph. Vial. Proximal-accpm: a
versatile oracle based optimization method. In‘Advances in Computational Economics,
Finance and Management Science’, to appear in ‘Computational Management Science’.
Kluwer.

19

[2] C. Beltran and F. J. Heredia. An effective line search for the subgradient method.Journal
on Optimization Theory and Applications, 125(1):1–18, 2005.

[3] C. Beltran-Royo. Line search for piecewise linear functions by the radar method. Technical
report, Logilab, HEC, University of Geneva, 2005.

[4] Dimitri. P. Bertsekas.Nonlinear Programming. Ed. Athena Scientific, Belmont, Mas-
sachusetts, (USA), 2n edition, 1999.

[5] G. W. Brown and T. C. Koopmans. Computational suggestions for maximizing a linear
function subject to linear inequalities. In T. C. Koopmans, editor,Activity Analysis of
Production and Allocation, pages 377–380, New York, 1951. Wiley.

[6] S. Y. Chang and K. G. Murty. The steepest descent gravitational method for linear pro-
gramming.Discrete Applied Mathematics, 25:211–239, 1989.

[7] A. R. Conn and G. Cornúejols. A projection method for the uncapacitated facility location
problem.Mathematical programming, 46:373–398, 1990.

[8] Sherali H. D. and I. Al-loughani. Solving euclidean distance multifacility location prob-
lems using conjugate subgradients and line-search methods.Computational optimization
and applications, 14:275–291, 1999.

[9] D.-Z. Du and X.-S. Zhang. Global convergence of rosen’s gradient projection method.
Mathematical Programming, 44(3):357–366, 1989.

[10] W. W. Hager and S. Park. The gradient projection method with exact line search.Journal
of Global Optimization, 30(1):103–118, 2004.

[11] D. J. Higham and N. J. Higham.MATLAB guide. SIAM, Philadelphia, Pennsilvania, USA,
2000.

[12] J. B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algorithms,
volume I and II. Springer-Verlag, Berlin, 1996.

[13] J.-B. Hiriart-Urruty and C. Lemaréchal.Fundamentals of convex analysis. Springer, 2000.

[14] J. E. Kelley. The cutting-plane method for solving convex programs.Journal of the SIAM,
8:703–712, 1960.

[15] C. Lemke. The constrained gradient method of linear programming.SIAM, 9(1):1–17,
1961.

[16] D. G. Luenberger.Linear and Nonlinear Programming. Addison-Wesley, Reading, Mas-
sachusetts, USA, second edition, 1984.

[17] ApS Mosek. Version 3.1.1.42, copyright (c), 1998-2004. http://www.mosek.com.

[18] P. Neame, N. Boland, and D. Ralph. An outer approximate subdifferential method for
piecewise affine optimization.Mathematical programming, Ser. A 87:57–86, 2000.

[19] J. Rosen. The gradient projection method for nonlinear programming, I. linear constraints.
Journal of the Society for Industrial and Applied Mathematics, 8:181–217, 1960.

20

[20] B. Shah, R. Buehler, and O. Kempthorne. Some algorithms for minimizing a function of
several variables.Journal of the Society for Industrial and Applied Mathematics, 12(1):74–
92, 1964.

[21] N. Z. Shor. Nondifferentiable optimization and polynomial problems. Nonconvex opti-
mization and its applications. Kluwer academic publishers, 1998.

[22] M. J. Todd. The many facets of linear programming.Mathematical Programming, Ser. B
91:417–436, 2002.

[23] P. Wolfe. A method of conjugate subgradients for minimizing nondifferentiable functions.
Mathematical Programming Study, 3:145–173, 1975.

[24] X.-S. Zhang. On the convergence of rosen’s gradient projection method: Three-
dimensional case (in chinese).Acta Mathematicae Applicatae Sinica, 8, 1985.

[25] G Zoutendijk.Methods of feasible directions. Elsevier, Amsterdan, 1960.

21

