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Abstract

Oracle Based Optimization (OBO) conveniently designates an approach
to handle a class of convex optimization problems in which the informa-
tion pertaining to the function to be minimized and/or to the feasible
set takes the form of a linear outer approximation revealed by an oracle.
We show, through three representative examples, how difficult problems
can be cast in this format, and solved. We present an efficient method,
Proximal-ACCPM, to trigger the OBO approach and give a snapshot on
numerical results. This paper summarizes several contributions with the
OBO approach and aims to give, in a single report, enough information on
the method and its implementation to facilitate new applications.

Keywords Non-differentiable optimization, cutting plane methods, interior-
point methods, Proximal-ACCPM, multicommodity flow, p-median, integrated
assessment models.
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1 Introduction

Oracle Based Optimization (OBO) conveniently designates an approach to handle
a class of convex optimization problems in which the information pertaining to
the function to be minimized and/or to the feasible set takes the form of a linear
outer approximation revealed by an oracle. By oracle, we mean a black-box
scheme that returns appropriate information on the problem at so-called query
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points. In convex unconstrained optimization, this information takes the form of
a linear support for the epigraph set of the function to be minimized. This class
of problems is known as “Nondifferentiable Convex Optimization”. We use the
terminology OBO to emphasize the principle of the method — a dialog between
an optimizer and an oracle — and the fact that we can handle more general
classes of problems.

The goal of this paper is two-fold. We first intend to present an efficient
method, Proximal-ACCPM, that implements an OBO approach. We give a con-
cise but accurate description of the analytic center cutting plane method (AC-
CPM), and more precisely of its recent enhancements that include a proximal
term (Proximal-ACCPM) and a logarithmic barrier on the epigraph of the smooth
component of the objective function. The main issue in a cutting plane method
is to decide where to query the oracle in order to improve a current polyhedral
approximation of the problem. Proximal-ACCPM selects the analytic center of
this polyhedral set, that is, the point that minimizes the logarithmic barrier func-
tion on that set, augmented with a proximal term. This choice is efficient since it
usually requires relatively few query points to achieve an accurate approximation
of an optimal solution. Proximal-ACCPM relies on the interior-point method-
ology to compute the query points. This methodology is well suited to handle
non-linear information and makes it easy to implement the extensions we discuss
in the paper.

Our second goal is to provide a set of application problems that are very
different in nature and thus illustrate the versatility of the method. This choice
does not cover the full range of applications successfully handled with Proximal-
ACCPM. Yet it gives a flavor of what can be done and hopefully it will convince
readers to develop applications of their own.

In this paper we do not deal with the convergence issue. The pseudo-polynomial
complexity of the method on the feasibility problem1 has been proved in [16, 24].
The proofs are involved but the principles underlying the method are relatively
simple. Neither will we review the literature on nondifferentiable convex opti-
mization. The field is large and we content ourselves with referring to survey
papers [23, 18]. In this presentation we concentrate on the description of the
method with some recent extensions and we illustrate its implementation and
performance on three large-scale applications recently reported in the literature.

The paper is organized as follows. In Section 2 we present the framework of
Oracle Base Optimization. Section 3 provides a succinct description of Proximal-
ACCPM. Two enhancements of the method are discussed. None of them is really
new, but we believe that they crucially contribute to the overall efficiency of the
implementation. We also discuss how to compute a lower bound and thus obtain
a reliable stopping criterion. Section 4 deals with three examples. The first
one, the well-known multicommodity flow problem, is representative of large-

1An optimality problem can be cast in the format of a pure feasibility problem.
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scale continuous optimization. The method has been applied to the linear [1]
and the nonlinear [2] cases. The nonlinear version of the multicommodity flow
problems we present here is particularly interesting, because part of the problem
structure need not be revealed by a first-order oracle. As it is presented in Section
3, Proximal-ACCPM directly incorporates the non-linear information and thus
achieves a significant gain of efficiency.

The second application is the p-median problem, a combinatorial optimization
problem that is solved by Lagrangian relaxation. This example illustrate how
powerful is Lagrangian relaxation to generate lower bounds for the optimal value
of this combinatorial problem. These bounds are further used in an enumerative
scheme which computes an optimal integer solution. In the same subsection
we present the new concept of semi-Lagrangian relaxation, recently introduced
in [4]. There, it is shown that using semi-Lagrangian relaxation permits us to
solve to optimality the original combinatorial problem without resorting to an
enumerative scheme.

Our last application deals with air quality control in urban regions and the
coupling of modules in Integrated Assessment Models (IAM). The economic ac-
tivity creates pollutant emissions that are spatially distributed. Geographic and
climate models translate those primary pollutant emissions into ozone concentra-
tions which determine air quality. The objective of the study is to find an optimal
adjustment of the economic activity that results in acceptable ozone concentra-
tions. The modeling approach consists in coupling two models, a techno-economic
model and a climate model, to properly handle the interaction between the eco-
nomic activity and the air quality. From a methodological point of view, this
approach is original as it allows the coupling of two models that have totally
different natures.

2 Oracle based optimization

Oracle based optimization deals with the convex programming problem

min{f(u) = f1(u) + f2(u) | u ∈ U ⊂ Rn}, (1)

where f1 is a convex function, f2 is a twice differentiable convex function and
U is a convex set. We assume that f1(u) and U are revealed by a first order
oracle while f2(u) is accessed through a second order oracle in an explicit way.
By oracle, we mean a black-box procedure which at any query point u returns
the information described in Definitions 1 and 2 below.

Definition 1 A first-order oracle for problem (1) is a black box procedure with
the following property. When queried at u, the oracle returns 1 or 2.

1. u 6∈ U and (a, c) is such that aT u′− c ≤ 0,∀u′ ∈ U (feasibility cut). In that
case, we set f1(u) = +∞.
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2. u ∈ U and (a, c) is such that aT u′ − c ≤ f1(u
′),∀u′ ∈ U (optimality cut)2.

Definition 2 A second-order oracle for problem (1) is a black-box procedure with
the following property. When queried at u, the oracle returns the function value
and the first and second derivatives of f2(u).

In the traditional OBO approach, the function f2 is handled in the same way as
f1, that is by means of a first-order oracle. This approach looses information. In
this paper, we exploit the explicit knowledge of the function f2 and its derivatives
in the form of a barrier on the epigraph set.

Assumption 1 The function f2 is such that the logarithmic barrier − log(ζ −
f2(u)) on the epigraph set of f2, {(u, ζ) | ζ ≥ f2(u), u ∈ U}, is self-concordant3.

In many applications, the objective function f1 is a strictly positively weighted
sum of p nonsmooth convex functions

f1(u) =

p∑
i=1

πif1i(u).

In that expression, we can consider that f1(u) is revealed by p independent first-
order oracles. The epigraph of the function f is the set defined by {(u, z, ζ) | πT z ≥
f1(u), ζ ≥ f2(u)}. Using this property, problem (1) can also be written in as

min πT z + ζ
s.t. f1j(u)− zj ≤ 0, j = 1, . . . , p,

f2(u)− ζ ≤ 0,
u ∈ U.

(2)

This formulation is conveniently named the disaggregate mode.
The first order oracle is used to build a polyhedral approximation of the

epigraph of f1. Suppose the oracle has been queried at uk, k = 1, . . . , κ, and
has returned feasibility and/or optimality cuts associated with those points. The
corresponding inequalities are collected in

AT u− ET z ≤ c.

2In general, a ∈ ∂f1(u), c = aT u − f1(u), but this is not necessarily so. The cut may have
no intersection with the epigraph set (i.e., may be situated strictly below that set).

3The concept of self-concordant function has been introduced by Nesterov and Nemirovski
[26] to extend the theory of interior-point methods for linear programming to a more general
class of functions. The condition links the second and third derivatives of the function. For a
thorough but more readable presentation of the theory of self-concordant functions we refer to
[25].
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In that definition, the subgradients a of the function f1 form the matrix A while
E is a binary matrix that is constructed as follows. If the objective f1 is treated
in an aggregate mode (p = 1), then E is a binary row vector. An entry one in
E indicates that the z variable is present in the cut, implying that the cut is an
optimality cut. In contrast, a zero indicates that the cut is a feasibility cut. If
the objective f1 is disaggregated into p components, row j of E corresponds to
a variable zj and each column corresponds to a cut. An entry one in row j and
column k indicates that the cut k is an optimality cut for f1j(u). If column k is
a null vector, then cut k is a feasibility cut.

Let θ̄ be the best recorded value such that θ̄ = mink≤κ{f1(u
k) + f2(u

k)}. In
view of the above definitions, we can define the localization set Lκ as

Lκ =
{
(u, z, ζ) | AT u− ET z ≤ c, f2(u) ≤ ζ, πT z + ζ ≤ θ̄

}
,

which is a subset of an outer approximation of the epigraph of f that contains
all optimal pairs (u∗, f(u∗)). Thus, the search for a new query point should be
confined to the localization set. Among possible solution methods for (1), we
briefly sketch cutting plane schemes which work as follows:

1. Select a query point in the localization set.

2. Send the query point to the first order oracle and get back the optimal-
ity/feasible cuts.

3. Send the query point to the second order oracle to compute the objective
function f2.

4. Update the lower and upper bounds and the localization set.

5. Test termination.

The main issue in the design of a cutting plane scheme is step 1. Different choices
lead to different results. In that paper, we propose a particular method, named
Proximal-ACCPM, that selects the analytic center of the localization set as the
new query point.

3 Proximal-ACCPM

It is well-known that efficient methods for non differentiable convex optimization
rely on some regularization scheme to select the query point. We discuss here
such a scheme; it is based on the concept of proximal analytic center which
corresponds to the minimum of the standard logarithmic barrier augmented with
a proximal term.
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3.1 Proximal analytic center

We associate with the localization set a standard (weighted) logarithmic barrier

F (s0, s, σ) = −w0 log s0 −
κ∑

i=1

wi log si − ω log σ, (3)

with (s0, s, σ) > 0 defined by

s0 = θ̄ − πT z − ζ,
si = ci − (AT u− ET z)i, i ∈ K = {1, . . . , κ},
σ = ζ − f2(u).

The barrier function is augmented with a proximal term to yield the augmented
barrier

Ψ(u, s0, s, σ) =
ρ

2
||u− ū||2 + F (s0, s, σ), (4)

where ū ∈ Rn is the query point that has achieved the best objective value θ̄. We
name it the proximal reference point. The proximal analytic center is defined as
the solution of

min
u,z,ζ,s0,s,σ

Ψ(u, s0, s, σ)

s.t. s0 + πT z + ζ = θ̄,
si + (AT u− ET z)i = ci, i ∈ K = {1, . . . , κ},
σ + (f2(u)− ζ) = 0,
s0 > 0, s > 0, σ > 0.

(5)

If (u, z, ζ, s0, s, σ) is feasible to (5), then (5) is equivalent to minimizing Φ(u, z, ζ) =
Ψ(u, s0, s, σ), in which s0, s and σ are replaced by their value in u, z and ζ. Note
that the localization set is not necessarily compact, but it is easy to show that,
thanks to the proximal term, the generalized analytic center exists and is unique.

In the next paragraphs, we shall use the following notation. Given a vector
s > 0, S is the diagonal matrix whose main diagonal is s. We also use s−1 = S−1e
to denote the vector whose coordinates are the inverse of the coordinates of s.
Similarly, s−2 = S−2e. Finally, given two vectors x and y of same dimension,
xy denotes their component-wise product. With this notation, the first order
optimality conditions for (5) are

ρ(u− ū) + Aws−1 + ωf ′2(u)σ−1 = 0, (6a)

πw0s
−1
0 − Ews−1 = 0, (6b)

w0s
−1
0 − ωσ−1 = 0, (6c)

s0 + πT z + ζ − θ̄ = 0, (6d)

si + (AT u− ET z)i − ci = 0, i ∈ K = {1, . . . , κ}, (6e)

σ + f2(u)− ζ = 0. (6f)
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The algorithm that computes the analytic center is essentially a Newton
method applied to (6a)-(6f). We shall see later how the vector ξ = ws−1 is
used to derive a lower bound for the optimal solution.

In view of Assumption (1), Φ is self-concordant; Newton’s method is thus
polynomially convergent [25]. For the sake of simplicity, let us define v = (u, z, ζ).
In the case when v is feasible to (5) the Newton direction is

dv = −[Φ′′(v)]−1Φ′(v).

The damped Newton’s method for computing the proximal analytic center con-
sists in taking damped steps to preserve feasibility of v. The aim is to achieve
a sufficient decrease of Φ, until the domain of quadratic convergence is reached.
Let

λ(v) = ([Φ′′(v)]−1Φ′(v))T Φ′(v) = −dvT Φ′(v). (7)

As long as λ(v) > 3−
√

5
2

a step of length (1 + λ(v))−1 preserves feasibility and

induces a decrease of Φ by an absolute constant. When λ(v) ≤ 3−
√

5
2

a full step
is feasible and the method converges quadratically. The method has polynomial
complexity.

The stopping criterion is triggered by the proximity measure. When λ(v) falls

below the threshold value η < 3−
√

5
2

, the search for the proximal analytic center
stops. In practice, the much looser criterion η = 0.99 suffices.

3.2 Infeasible Newton’s method

Unfortunately we don’t have easy access to feasible solution for problem (5).
In cutting plane schemes, new constraints cut off the current iterate from the
new localization set and there is no direct way to retrieve feasibility if the cuts
are deep. Since we can’t anymore eliminate the variables (s0, s, σ), we can’t
apply a feasible Newton method to minimize Φ. Thus, we propose an infeasible
start Newton method for (5), which aims to achieve feasibility and optimality
simultaneously in the extended space (u, z, ζ, s0, s, σ).

In the course of the optimization process, the first order conditions (6a)-(6f)
are never satisfied. However, we can assume that (s0, s, σ) > 0. We introduce
the residuals r = (ru, rz, rζ , rs0 , rs, rσ) and write

ρ(u− ū) + Aws−1 + ωf ′2(u)σ−1 = −ru, (8a)

w0πs−1
0 − Ews−1 = −rz, (8b)

w0s
−1
0 − ωσ−1 = −rζ , (8c)

s0 + πT z + ζ − θ̄ = −rs0 , (8d)

si + (AT u− ET z)i − ci = −rsi
, i ∈ K = {1, . . . , κ}, (8e)

σ + f2(u)− ζ = −rσ. (8f)
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The Newton direction associated to (8a)-(8f) is given by

P


du
dz
dζ
ds0

ds
dσ

 =


ru

rz

rζ

rs0

rs

rσ

 , (9)

where

P =


ρI + ωf2(u)′′σ−1 0 0 0 −AS−2 ωf2(u)′σ−2

0 0 0 −w0πs−2
0 ET S−2 0

0 0 0 −w0s
−2
0 0 ωσ−2

0 πT 1 1 0 0
AT −ET 0 0 I 0

f ′2(u) 0 −1 0 0 1

 .

Since (6d) and (6e) are linear, a full Newton step, i.e., a step of length 1,
yields a point that is feasible with respect to these equations. However, the
same step does not yield a feasible point with respect to the nonlinear equation
(6f). Thus, the method remains essentially infeasible and we cannot use the
proximity measure λ to determine the steplength αstep. Instead, we use the
following empirical rule. Let

αmax = max(α | s + αds > 0, s0 + αds0 > 0, σ + αdσ > 0),

the selected step is
αstep = min(1, γαmax),

where the parameter γ is a safeguard to stay away from the boundary of the
domain. In practice, we take γ = 0.95.

When f2(u) is linear (or constant), it may be the case that (6d) and (6e) be-
come satisfied. Instead of using the default step length (1+λ(v))−1, as prescribed
by the theory, we perform the one-dimensional linesearch

αstep = arg min Ψ(v + αdv).

As mentioned earlier, the query point is not feasible for the new cuts returned
by the first order oracle. Finding a good starting value for sκ+1 and/or s0 after a
cut has been added is an issue. Though [17] proposes a scheme that preserves the
polynomial complexity of the method, in our practical implementation we use a
simple heuristic that turn out to be very efficient.

To summarize, a basic step of the Newton iteration is

1. Send the current point u to the second order oracle to compute the objectif
function f2(u) and its first and second derivatives.
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2. Compute the Newton step (du, dz, dζ, ds0, ds, dσ) by (9).

3. Compute a step length αstep to update (u, z, ζ, s0, s, σ).

4. Test termination.

3.3 Lower bound

A lower bound for (1) permits a measure of progress to optimality. We now
explain a way to generate such a bound. The first step in the derivation of the
lower bound consists in introducing the perturbed function f(u)− rT u, where r
is a vector to be specified later. The second step is to replace the non-smooth
function f1(u) by its current polyhedral approximation. This is done by replacing
f1(u) by πT z under the constraints AT u−ET z ≤ c. We thus have the bounding
inequality

f(u)− rT u ≥ min
u,z
{πT z + f2(u)− rT u | AT u− ET z ≤ c}.

In view of the convexity of f2, we may write

f(u)− rT u ≥ f2(u
c)− f ′2(u

c)T uc +

min
u,z
{πT z + f ′2(u

c)u− rT u | AT u− ET z ≤ c},

where uc is a point of choice (e.g., approximate analytic center). By duality we
obtain

f(u)− rT u ≥ f2(u
c)− f ′2(u

c)T uc +

min
u,z

max
ξ≥0

{(f ′2(uc) + Aξ)T u + (π − E)T z − cT ξ − rT u},

= f2(u
c)− f ′2(u

c)T uc +

max
ξ≥0

{
−cT ξ + min

u,z

[
(f ′2(u

c) + Aξ − r)T u + (π − Eξ)T z
]}

.(10)

If ξ ≥ 0 is such that f ′2(u
c) + Aξ = r and Eξ = π, then

f(u) ≥ f2(u
c)− f ′2(u

c)T uc + rT u− cT ξ.

We now show how one can get such a vector ξ at the end of the iterations
that compute the proximal analytic center. In view of (8b), we let ξ = ξc =
w(sc)−1 > 0 and we scale ξc by using the special structure of the matrix E to
have π − Eξc = 0 and we define r = f ′2(u

c) + Aξc. In view of the optimality
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conditions (6a) and (6b) one may expect r to be small. We obtain the bound for
the optimal objective function value by

f(u∗) ≥ f2(u
c)− f ′2(u

c)T uc − cT ξc + rT u∗,

≥ f2(u
c)− f ′2(u

c)T uc − cT ξc + rT (u∗ − uc) + rT uc,

≥ f2(u
c)− f ′2(u

c)T uc + rT uc − cT ξc − ||r||δ. (11)

The last inequality follows from Cauchy-Schwartz and δ ≥ ||u∗− uc|| is an upper
bound on the distance of the current point uc to the optimal set. Finding a
good value for δ cannot be done on theoretical grounds. It is essentially problem
dependent. In practice, we obtained good results by taking the “empirical” value
δ = 5× ||uc − ū||.

If the variable u is constrained to be nonnegative in (1), we can further improve
the computation of the lower bound by taking r = −min{0, f ′2(uc)+Aξc}, where
the min operator is taken component-wise. In that case, the coefficient of u in
the inner minimization is always nonnegative and (f ′2(u

c) + Aξ− r)T u = 0 at the
solution of (10). This remark is particularly useful when r = 0. Then we obtain
the exact lower bound f2(u

c)− f ′2(u
c)T uc − cT ξc.

3.4 Implementation

Since the oracle is entirely user-defined, we do not include it in the description.
The code has two main blocks: the first one computes query points; the second
one organizes the dialog between the oracle and the query point generator. The
code also includes an important initialization block.

Initialization This module initializes the instance and the various parameters.

Query point generator This modules includes two submodules: the first one
creates the localization set based on the information sent by the cut man-
ager; the second one computes approximate proximal analytic centers.

Manager This module keeps track of the cuts generated by the oracle and of the
current primal and dual coordinates of the analytic center. It also controls
the parameters that are dynamically adjusted and computes criteria values
that can be used by the user to stop the algorithm. Finally, it acts as a
filter between the oracle and the query point generator.

Two parameters of Proximal-ACCPM are often critical in the applications: the
weight w0 on the epigraph cut in (3) and the coefficient ρ of the proximal term
in (4). The general strategy is to assign to w0 a value equal to the number of
generated cuts [18]. The management of the proximal term is more problem
dependent. This point will be briefly commented in the next section. When the
problem to be solved has no box constraints on the variables (e.g., when relaxing
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equality constraints in Lagrangian relaxation) the computation of the Newton
direction in Proximal-ACCPM can be made more efficient than in plain ACCPM
[11].

The code is written in Matlab; it has around 700 lines of code in the query
point generator and 400 in the manager. Matlab is particularly efficient in dealing
with linear algebra. Not much gain can be expected by translating the code into
C++. However, a C version would make it easier to link Proximal-ACCPM with
oracles written in C or FORTRAN or to do an embedding of Proximal-ACCPM
within a larger optimization scheme (e.g., a branch and bound scheme). The
code is the result of a continuing development efforts by teams at Logilab partly
supported by Swiss NSF.

4 Applications

We have seen that oracle based optimization is relevant when it is possible to
approximate the epigraph set of the function to be minimized, and the feasible
set, by polyhedral sets. Let us list a few techniques that lead to this situation:
Lagrangian relaxation [15], Lagrangian decomposition [19], column generation
[3], Benders’ decomposition [5], dual gap function in variational inequalities [27],
etc. In this section we present three representative applications, one in large-
scale nonlinear continuous optimization, one in combinatorial optimization and
one dealing with the coupling of economic and environmental models. Those
problems have been fully treated in [1, 2, 4, 8].

In each case, we give a brief presentation of the problem and report a sample
of numerical results. This will give the reader an idea of the type of problems that
can be solved with Proximal-ACCPM. When the numerical results are displayed
in a table, we give the following information: problem identification, denoted
‘Problem ID’, number of outer iterations (equivalently, the number of oracle calls),
denoted ‘Outer’, number of inner iterations (Newton iterations to compute an
analytic center), denoted ‘Inner’, total CPU time in second, denoted ‘CPU’ and
the fraction of the CPU time spent in the oracle, denoted ‘%Oracle’.

4.1 Multicommodity flow problems

Given a network represented by the directed graph G(N ,A), with node setN and
arc setA, the multicommodity flow problem consists in shipping some commodity
flows from sources to sinks such that the demands for each commodities are
satisfied, the arc flow constraints are met and the total cost flow is minimum.
The arc-flow formulation of the multicommodity flow problem is

min
∑
a∈A

fa(ya) (12a)
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s.t.
∑
k∈K

xk
a = ya, ∀a ∈ A, (12b)

Nxk = dkδ
k, ∀k ∈ K, (12c)

xk
a ≥ 0, ∀a ∈ A, ∀k ∈ K. (12d)

Here, N is the network matrix; K is the set of commodities; dk is the demand
for commodity k; and δk is vector with only two non-zeros components: a 1 at
the supply node and a −1 at the demand node. The variable xk

a is the flow
of commodity k on the arcs a of the network and xk is the vector of xk

a. The
objective function f is a congestion function on the arcs.
For the sake of simpler notation we write problem (12) in the more compact
formulation

min{f(y) | Bx = y, x ∈ X}, (13)

where X represents the set of feasible flows that meet the demands with respect
to the network constraints. Bx defines the load flow.

The standard Lagrangian relaxation of (13) assigns the dual variables u to
the coupling constraints Bx = y and relaxes them. The Lagrangian problem is

max
u≥0

L(u), (14)

where

L(u) = min
x∈X,y

f(y) + uT (Bx− y),

= min
y

(f(y)− uT y) + min
x∈X

uT Bx,

= −f∗(u) + min
x∈X

uT Bx.

The function f∗(u) is the Fenchel conjugate of f ; it is convex. In the multicom-
modity case, the second part of the Lagrangian is a sum of |K| shortest path
problems. We denote

SP(ū) = min
x∈X

(BT ū)T x. (15)

We recall that in Proximal-ACCPM, we treat the negative of the objective func-
tion (14). Let x̄ be an optimal solution returned by the oracle (15) at a given
point ū. Since SP(u) results from a minimization problem, the inequality SP(u)
≤ (Bx̄)T u provides a linear upper estimate of the concave function SP(u). The
solution computed by the oracle −f∗(ū) + (Bx̄)T ū produces a lower bound for
the original problems. Instead of using (11) to compute an upper bound, we use
the variable ξ to compute a feasible solution to (12) (It can be shown).

For the nonlinear multicommodity flow problem, we use the most widely used
function in telecommunications, the so-called Kleinrock congestion function:

f(y) =
y

c− y
,
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where c is the vector of capacities on the arcs. The conjugate function is

f∗(u) = 2
√

cT u− cT u− 1, ∀u ≥ 1

c
.

For the linear case, the objective function is

f(y) =

{
tT y, 0 ≤ y ≤ c,
+∞, otherwise,

where c is the vector of capacities and t the vector of unit shipping cost on the
arcs. The conjugate function is

f∗(u) = cT u, ∀u ≥ 0.

To get a feel for the numerical performance, we pick few examples that have
been solved in [1, 2]. We select 3 types of problems. Planar and Grid instances
are telecommunications networks while Winnipeg, Barcelona and Chicago are
transportation problems. Table 1 gives for each problem the number of nodes,
the number of arcs, and the number of commodities. The oracle is a shortest path
problem solved with Dijkstra algorithm. The code is written in C. The tests were
performed on a PC (Pentium IV, 2.8 GHz, 2 Gb of RAM) under Linux operating
system.

Table 2 shows the numerical results to solve the linear and the nonlinear case
with a relative otpimality gap less than 10−5. We followed different strategies
in the management of the proximal term, depending on whether the problem is
linear or not. In the linear case, a constant value for the proximal parameter, say
ρ = 10−2 is suitable. In the nonlinear case, the proximal parameter is dynamically
adjusted, according to success or failure in improving the value of the Lagrangian
dual objective (lower bound). We start with ρ = 1 and multiply the current ρ by
10 in case of a 3 consecutive failures, up to the limit value ρ = 1010.

Problem ID # nodes # arcs # commodities
planar500 500 2842 3525
planar800 800 4388 12756
planar1000 1000 5200 20026
grid12 900 3480 6000
grid13 900 3480 12000
grid14 1225 4760 16000
grid15 1225 4760 32000
Winnipeg 1067 2975 4345
Barcelona 1020 2522 7922
Chicago 933 2950 93513

Table 1: Test problems.
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Linear case Nonlinear case
Problem ID Outer Inner CPU %Oracle Outer Inner CPU %Oracle
planar500 229 744 88.7 21 127 324 32.2 37
planar800 415 1182 557.2 16 182 429 110.5 40
planar1000 1303 2817 7846.7 12 381 869 568.1 26
grid12 509 1341 658.5 18 201 409 106.7 41
grid13 673 1629 1226.8 12 222 454 128.7 39
grid14 462 1363 843.6 22 204 414 173.2 48
grid15 520 1450 1055.1 20 203 414 172.8 48
Winnipeg 224 592 81.2 18 338 988 215.0 14
Barcelona 157 421 35.9 23 253 678 101.1 15
Chicago 180 493 79.2 47 145 370 48.6 41

Table 2: Numerical results.

The results in Table 2 have been further improved by means of column elim-
ination and an active set strategy. With these enhancements, the method could
solve huge instances with up to 40,000 arcs and 2,000,000 commodities. It has
also been compared to other state-of-the-art methods. It appears to be very com-
petitive, especially in the linear case, where it turns out to be from 4 to 30 times
faster than the best known results. (For more details, see [1, 2].)

4.2 Lagrangian relaxations of the p-median problem

In the p-median problem the objective is to open p ‘facilities’ from a set of m
candidate facilities relative to a set of n ‘customers’, and to assign each customer
to a single facility. The cost of an assignment is the sum of the shortest distances
cij from a customer to a facility. The distance is sometimes weighted by an
appropriate factor, e.g., the demand at a customer node. The objective is to
minimize this sum. Applications of the p-median problem can be found in cluster
analysis, facility location, optimal diversity management problem, etc. [7]. The
p-median problem is NP-hard [22].

The p-median problem can be formulated as follows

min
x,y

m∑
i=1

n∑
j=1

cijxij (16a)

s.t.
m∑

i=1

xij = 1, ∀j, (16b)

m∑
i=1

yi = p, (16c)

xij ≤ yi, ∀i, j, (16d)

xij, yi ∈ {0, 1}, (16e)
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where xij = 1 if facility i serves the customer j, otherwise xij = 0 and yi = 1 if
we open facility i, otherwise yi = 0.

In the following two sections we formulate the (standard) Lagrangian relax-
ation of the p-median problem, and the semi-Lagrangian relaxation.

4.2.1 Standard Lagrangian relaxation of the p-median problem

In this section we focus in the resolution of the (standard) Lagrangian relaxation
(LR) of the p-median problems by means of Proximal-ACCPM. To this end, we
relax constraints (16b) and (16c) in (16), to yield the dual problem

max
u,v

L1(u, v), (17)

and the oracle

L1(u, v) = min
x,y

m∑
i=1

n∑
j=1

cijxij +
n∑

j=1

uj(1−
m∑

i=1

xij) + v(p−
m∑

i=1

yi) (18a)

s.t. xij ≤ yi, ∀i, j, (18b)

xij, yi ∈ {0, 1}, (18c)

where u ∈ Rn is associated to the constraints
∑m

i=1 xij = 1, j = 1, . . . , n, and
v ∈ R to the constraint

∑m
i=1 yi = p.

We name Oracle 1 this oracle; it is trivially solvable. Its optimal solution is
also optimal for its linear relaxation. Consequently, the optimum of L1 coincides
with the optimum of the linear relaxation of (16).

To show Proximal-ACCPM performance when solving the standard Lagrangian
relaxation (18), we take a few examples reported in [11]. In this technical report,
several p-median problems based on data from the traveling salesman problem
(TSP) library [28] are solved. Instances of the grid problem, where the cus-
tomers are regularly spaced points on square, are also solved. In Table 3 we show
the results for ten representative instances (Proximal-ACCPM stopping criterion
set equal to 10−6). In this case, the proximal parameter is set to ρ = 1 initially
and is dynamically adjusted by multiplicative factors 2 and 0.5 depending on the
success or failure in improving the objective of the Lagrangian dual objective.
The updating is limited by the bounds 10−6 and 104. Programs have been writ-
ten in MATLAB and run in a PC (Pentium-III PC, 800 MHz, with 256 Mb of
RAM) under the Linux operating system.

4.2.2 Semi-Lagrangian relaxation of the p-median problem

The standard Lagrangian relaxation is commonly used in combinatorial optimiza-
tion to generate lower bounds for a minimization problem. An optimal integer
solution is obtained by a branch and bound scheme. The semi-Lagrangian re-
laxation (SLR) is a more powerful scheme, introduced in [4], that generates an
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Problem ID n p Outer Inner CPU %Oracle
Grid1521 1521 10 348 902 132 33
Grid1849 1849 10 417 1042 241 32
Grid2025 2025 10 382 961 229 37
Grid2304 2304 10 448 1111 370 34
Grid2500 2500 10 440 1095 428 34
TSP1817 1817 10 1070 2303 1861 10
TSP2103 2103 10 316 701 156 48
TSP2152 2152 10 196 430 98 51
TSP2319 2319 10 369 775 237 46
TSP3038 3038 10 127 292 102 62

Table 3: Numerical results.

optimal integer solution for (linear) combinatorial problems with equality con-
straints.

To strengthen L1, the SLR introduces in (16) the redundant constraints∑
i xij ≤ 1, j = 1, . . . , n, and

∑
i yi ≤ p. After relaxing (16b-16c), we obtain

the SLR dual problem
maxL3(u, v), (19)

and the new oracle

L3(u, v) = min
x,y

m∑
i=1

n∑
j=1

cijxij +
n∑

j=1

uj(1−
m∑

i=1

xij) + v(p−
m∑

i=1

yi) (20a)

s.t.
m∑

i=1

xij ≤ 1, ∀j, (20b)

m∑
i=1

yi ≤ p, (20c)

xij ≤ yi, ∀i, j, (20d)

xij, yi ∈ {0, 1}. (20e)

This oracle, which we name Oracle 3, is much more difficult than Oracle 1 (in
fact, Oracle3 is NP-hard). To cope with this difficulty one can use an intermediate
oracle (Oracle 2 ) defined as the Oracle 3 but without constraint (20c). We denote
L2 the associated dual function. In general, Oracle 2 is easier to solve than Oracle
3, especially in cases where the p-median underlying graph associated to Oracle
2 decomposes into independent subgraphs. In such situation, we solve an integer
problem per subgraph (see [4] for more details).

It can be seen that solving the SLR dual problem (20) completely solves
the p-median problem. Based on this result, we design a branch-and-bound free
procedure to completely solve the p-median problem. This procedure successively
maximizes the dual functions Li(u, v), i = 1, 2, 3. In this succession of three
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Instance Lower bound Upper bound %Opt.
Problem ID n p Or. 1 Or. 2 Or. 3 Value Method
rl1304 1304 10 2131787.5 2133534 - 2134295 VNDS 99.96
rl1304 1304 500 97008.9 97024 - 97024 SLR 100
vm1748 1748 10 2982731.0 2983645 - 2983645 SLR 100
vm1748 1748 500 176976.2 176986 176986 176986 SLR 100
d2103 2103 10 687263.3 687321 - 687321 SLR 100
d2103 2103 500 63938.4 64006 64006 64006 SLR 100
pcb3038 3038 5 1777657.0 1777677 - 1777835 VNDS 99.99
pcb3038 3038 500 134771.8 134798 134798 136179 VNDS 98.98
fl3795 3795 150 65837.6 65868 - 65868 SLR 100
fl3795 3795 500 25972.0 25976 25976 25976 SPR 100

Table 4: Solution quality

dual problems, the optimal solution of one dual problem is used as the starting
point for the next dual problem. After solving the last dual problem (L3(u, v))
we obtain, as a by-product, an optimal integer solution for (16). These dual
problems are solved by means of Proximal-ACCPM. Oracle 2 and 3 are solved by
means of CPLEX 8.1. Note that, although our procedure is branch-and-bound
free, CPLEX is, of course, based on a sophisticated branch-and-bound procedure.

If we are not able to solve the three dual problems we will only have a lower
bound of the p-median optimal value. In this case, we will compute an integer
solution for the p-median problem by means of an heuristic as for example the
’Variable Neighborhood Decomposition Search’ (VNDS) [20]. The quality or the
integer solution will be determined by the dual lower bound.

In Tables 4 and 5 we show the results (solution quality and performance) for 10
representative examples of the 44 instances tested in [4]. These instances can be
found in the TSPLIB [28] and range from 1304 to 3795 customers, which implies
2 to 14 million binary variables. The proximal parameter is set to the constant
value ρ = 10−2 for problems with Oracle 2 and Oracle 3. In these tables ‘Or.’
stands for Oracle, ‘VNDS’ for variable neighborhood decomposition search, ‘SLR’
for semi-Lagrangian relaxation and ‘ANIS’ for averaged number of independent
subgraphs. ‘%Opt.’ gives the quality of the solution and is computed as

100×
(

1− ‘Upper bound’− ‘Lower bound’

‘Lower bound’

)
.

Programs have been written in MATLAB and run on a PC (Pentium-IV Xeon
PC, 2.4 GHz, with 6 Gb of RAM) under the Linux operating system. Note that
in some cases the Oracle 3 is not called. The reason is either because the problem
has been completely solved by the second dual problem or the CPU time limit
has been reached when solving the second dual problem.
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Instance Outer ANIS CPU
Problem ID n p Or. 1 Or. 2 Or. 3 Or. 1 Or. 2 Or. 3 Total
rl1304 1304 10 390 35 0 1 95 17241 0 17336
rl1304 1304 500 133 15 0 143 8 40 0 48
vm1748 1748 10 500 21 0 1 174 3771 0 3945
vm1748 1748 500 146 15 2 131 14 61 22 97
d2103 2103 10 241 7 0 2 41 504 0 545
d2103 2103 500 500 26 2 39 143 10086 4309 14538
pcb3038 3038 5 341 5 0 1 111 1988 0 2099
pcb3038 3038 500 211 17 2 38 56 3269 3900 7225
fl3795 3795 150 1000 27 0 17 1100 39199 0 40299
fl3795 3795 500 500 38 1 25 259 2531 218 3008

Table 5: Performance

4.3 Coupling economic and environmental models

Integrated assessment of environmental (IAM) policies is becoming an important
priority due to the social need for local air pollution control or global climate
change mitigation. Typically an IAM will combine an economic model and an
environmental model to yield an evaluation of the costs and benefits associated
with some environmental goals, given the technological and economic choices
that are available. In this section we present a successful implementation using
Proximal-ACCPM in this context.

In [21], it has been proposed to use an oracle-based method to couple an Eu-
lerian air quality model and a techno-economic model of energy choices in an ur-
ban region. The implementation of the approach has been further developed and
tested in [8]. Ozone (O3) pollution is usually modelled in so-called Eulerian mod-
els that represent the transport of primary pollutants (typically NOx and VOCs)
and the air photochemistry under various weather conditions and for the specific
topography of the region considered. These models take the form of large scale
distributed parameter systems that are run over specific “weather episodes”4.
These simulations serve to build air-quality indicators like, e.g. the ozone con-
centration peak or the average over a threshold (AOT) during an episode. On the
other side techno-economic models are dynamic capacity expansion and produc-
tion models, also called activity analysis models. A typical example is MARKAL,
initially developed to represent energy-technology choices at a country level (see
[12], [6]) and also adapted to the description of these choices at a city level in
[13] and [14]. In a MARKAL model the planning horizon is in general defined
as 9 periods of 5 years. The model finds, for specified demands in energy ser-
vices, world prices of imported energy and given a gamut of technology choices,
an investment plan and a production program that minimize a system-wide total

4For example a two-day summer sunny period which may amplify the probability of ozone
peaks in green areas.
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discounted cost while satisfying some pollutant emissions limits.
From this brief description of the two categories of models, the reader may

realize that they belong to very different worlds. The interaction of the mod-
els in a coupling procedure can be schematized as follows. The economic model
produces a vector of pollutants emissions per sector of activity. These emissions
are then distributed over time and space using patterns that depend on the type
of activity. For instance, global urban heating emissions are easily dispatched in
space using the geographical distribution of buildings. They are also distributed
in time to follow a yearly seasonal pattern. The other important cause of emission
is the volume of traffic. The economic activity analysis outputs a distribution of
technologies used in the traffic different modes, each mode resulting in its own
level of emissions. To obtain the spatio-temporal distribution of these emissions
due to traffic one resorts to a complex congestion model of traffic (EM2), that
essentially computes traffic equilibria. These different sources of pollutant emis-
sions are then combined into a spatio-temporal distribution map of emissions.
The last step in the analysis consists in simulations performed with the Eulerian
model to compute air quality indices on a set of critical episodes. The combina-
tion of models that eventually produces the air quality indices is complex, but
at the end one can effectively compute air quality indices as a function of the
global emissions of pollutants by sector of economic activity. Clearly, one cannot
expect this function to be linear. Even worse, the computation may be very time
consuming.

We have described a one-way interaction of the models, starting from the
economic model and ending with air quality indices. Let us now describe the
feedback from the air quality assessment. Indeed, one may want to limit peaks of
pollution. This can be translated into upper limits on the air quality indices. We
now study this reverse mechanism and show how the complete problem can be
recast in the format of problem (1). Let us first schematize the economic activity
analysis as the linear program

min{cT x | Ax = a, x ≥ 0}. (21)

We shall refer to it as the E3 model. The economic activity x induces a vector
y of pollutants emissions. This vector is indexed by sector of activity. In the
paradigm of linear activity analysis, the total emission vector is assumed to be a
linear function of the economic activity level, say

y = Bx.

The complex transformation of the vector y of sectorial emissions into air
quality indices is represented by a vector function Π(y). In [8] it is shown that
one can compute the function value and estimate its gradient at any point y. If
Π̄ is the bound imposed on the air quality indices (higher indices imply lower air
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quality), we can represent our complex problem as the mathematical program-
ming problem

min{cT x | Ax = a, Bx− y = 0, Π(y) ≤ Π̄, x ≥ 0}. (22)

This large-scale highly nonlinear model is intractable by standard optimiza-
tion tool. However, it is quite easily amenable to an Oracle Based Optimization
approach. To this end, we introduce the function

f(y) = min{cT x | Ax = a, Bx = y, x ≥ 0}, (23)

and the set
Y = {y | Π(y) ≤ Π̄}. (24)

Our original problem can now be written as

min{f(y) | y ∈ Y }.

It remains to show that the above problem is of the same type as (1). It is
a well-known fact of convex analysis that the function f(y) is convex (this is
easily seen by considering the dual of the linear program that defines f) and
that one can compute a subgradient at each point of the domain of the function.
Unfortunately, one cannot make a similar statement on Y . Being the result of
such a complex transformation process, Π(y) is likely to be nonconvex. However,
one can hope that in the range of values that are of interest the nonconvexity is
mild. This is supported by empirical evidence. A gradient is also estimated by a
finite difference scheme.

Even in presence of mild nonconvexity, one cannot exclude pathology in run-
ning Proximal-ACCPM. A separating hyperplane for the set Y may turn out to
cut off part of the set, and exclude a point that was proved to be feasible earlier.
To cope with this difficulty, the authors of [8] simply shifted the plane to maintain
feasibility. They also made problem (23) easier by assuming monotonicity that
made it possible to replace the equality constraint Bx = y by Bx ≤ y.

As the air chemistry description actually involves nonlinear functions, we
have implemented a technique of successive local linearization of the air pollution
dynamic equations. The details of the implementation are given in [8]. In a
particular simulation based on data describing the Geneva (Switzerland) region, a
solution to the reduced order optimization problem is obtained through Proximal-
ACCPM, with 30 calls to the oracles (24 feasibility cuts and 6 optimality cuts
were peformed). A feasibility cut (call to the air quality oracle) takes 30 minutes
computing time (SUN Ultra-80, Ultrasparc driver) whereas an optimality cut
(call to the techno-economic model) takes 10 seconds.

This application demonstrates the possibilities offered by an OBO method to
tackle Integrated Assessment Models where part of the modeling is a large-scale
simulator of complex physics and chemistry processes. Since Proximal-ACCPM
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keeps the number of oracle calls to a small or moderate size it permits the use
of these simulators in the design of some oracles and therefore it realizes the
coupling that is the essence of IAMs.
Remark A similar implementation has been realized recently for an IAM of
climate change policies. It is reported in [9, 10]. In that case the coupling is real-
ized between an economic growth model and an intermediate complexity climate
model. This second successful experience that we will not further described here
confirms the potential of OBO techniques for the exploitation of complex and
large-scale IAMs.

5 Conclusion

In that paper we have presented Proximal-ACCPM, an efficient method for con-
vex nondifferentiable optimization, and discussed three large-scale applications
that are representative of an oracle based optimization approach. Our presen-
tation of Proximal-ACCPM focuses on the necessary information for an efficient
implementation. It also includes recent extensions, in particular an explicit treat-
ment of second-order information when this information is available. The three
examples we selected have recently been reported in the literature. They are
genuinely very large-scale problems. The first two are solved using a classi-
cal transformation known as Lagrangian relaxation. The transformed problem
has much smaller dimension, thousands of variables instead of millions, but one
can only collect information about it via a first-order oracle. It is shown that
Proximal-ACCPM is powerful enough to solve huge instances of these problems.
The third application fully exploits the concept of oracle based optimization to
organize a dialog between two large-scale models that have totally different na-
tures, a techno-economic model and a large-scale simulator of complex physics
and chemistry processes. The exchanges between the two models are performed
through few variables and each model is treated as a first-order oracle vis-à-vis
these variables. These oracles, and especially the simulator, are computationally
costly. To make the OBO approach successful, one needs a method that keeps
the number of calls to the oracles as low as possible. Proximal-ACCPM does the
job.
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