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Abstract

The maximization of one-dimensional piecewise linear concave (OPLC)
functions arises in the line search associated with the maximization of piece-
wise linear concave functions (e.g. Kelley cutting plane method). The OPLC
line search is usually done by thenext-break-point method, where one goes
from break point to break point up to the optimum. If the number of break
points is large this method will be computationally expensive. One can also
use some classical derivative-free line search method as for example thegol-
den section method. Such methods do not take advantage of the OPLC geo-
metry. As an alternative, we propose an improved version of the so-called
radar method, which maximizes an OPLC function by maximizing succes-
sive outer approximations.We prove superlinear and finite convergence
of the radar method. Furthermore, our computational test shows that
the radar method is highly effective independently from the number of
break points.

Keywords: Piecewise linear concave function, line search, radar method,
next-break-point method, golden section method, Kelley cutting plane met-
hod.

1 Introduction

In this paper we study the convergence and performance ofan improved version
of the so-calledradar method [BH05], a procedure intended to maximize a one-
dimensional piecewise linear concave (OPLC) function.

OPLC functions are nondifferentiable and arise, for example, in the line search
associated with the maximization of a piecewise linear concave (PLC) function by
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a direction following method. A typical source of PLC maximization is the Kelley
cutting plane method [Kel60]. We assume that the OPLC function is explicitly
given as the lower envelope of a finite set of lines.

When dealing with a line search problem one can compute an optimal point of the
associated unidimensional function (exact line search) or an approximate optimal
point (approximate line search). Most of the time the exact OPLC line search is
done by thenext-break-point method. Taking advantage of the well known geome-
try of the graph of an OPLC function, one goes from break point to break point of
the OPLC function up to the optimum [HP04].

In the case of a large number of break points one may perform an approximate
OPLC line search, by a truncated version of the next-break-point method. Some-
times, even a single step of the next-break-point is performed [CC90]. Exact or
approximate OPLC line searches could also be done by using classic derivative-
free line search methods such as thegolden section method [BS79].

The relevance of the exact OPLC line search has been shown for example in
[NBR00], where a PLC function is optimized by using an approximate subdif-
ferential method combined with an OPLC line search (three versions of the OPLC
line search are tested). Roughly speaking, the exact OPLC line search divides by
two the total number of (costly) subdifferentical iterations combined with an ap-
proximate OPLC line search. In [HP04] the usefulness of the exact OPLC line
search is also demonstrated for the gradient projection method applied to the graph
partitioning problem.

Our starting point is the radar method developed in [BH05]. In that paper an ap-
proximate line search is performed by optimizing an approximation to the OPLC
function. This first version of the radar method was tested as an approximate line
search for the subgradient method and clearly outperformed the Polyak step rule
[Sho98]. In this paper, we improve the previous radar method and study the con-
vergence of the improved version. Throughout the remaining of the paper we will
refer to this improved version of the radar method when using the termradar met-
hod. The improved version has been successfully used as the exact line search
method for a conjugate Rosen’s gradient projection method used in piecewise li-
near concave optimization [Bel07].

This paper is organized as follows. In section 2 we state the OPLC problem and
notation. In section 3 the radar method is introduced. A discussion on the conver-
gence of the radar method is presented in section 4. Finally a numerical test and
conclusions can be found in sections 5 and 6, respectively.

2 Statement of the problem

We consider an OPLC functionf(α) defined as the lower envelope of the lines
{rj(α)}j∈J , whereJ = {1, . . . ,m} andrj(α) = mjα + nj . That isf(α) =
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minj∈J rj(α). Our objective is to solve theOPLC problem (see Fig. 1):

α∗ = argmax
α∈R

f(α), (1)

Definition 1 We say thatrj is an active line at ᾱ if f(ᾱ) = rj(ᾱ).

Definition 2 A line rj is called thesteepest active line atᾱ if it has the greater
slope among the active lines at̄α.

We recall here the definition of left and right derivatives, f−(ᾱ) and f+(ᾱ),
respectively:

f−(ᾱ) := lim
x→x̄,x<x̄

f(x)− f(x̄)
x− x̄

and f+(ᾱ) := lim
x→x̄,x>x̄

f(x)− f(x̄)
x− x̄

.

3 The radar method

We concentrate now in the solution of the OPLC problem (1) by the radar method.
Without loss of generality, we assume thatα∗ is the smallest optimal point in case
of multiple optimizers, thatf is parameterized such thatf(0) = 0 and thatα∗ ≥ 0.
The graph off in the interval of interestI = [0, α∗] is the union ofr line segments
that joint the break pointspi = (ai, bi) ∈ R2, i = 0, . . . , r. We have thatp0 =
(0, 0) andpr = (α∗, f(α∗)). The intervalI is partitioned into

I1 ∪ I2 ∪ . . . ∪ Ir = [a0, a1[∪ [a1, a2[∪ . . . ∪ [ar−1, ar].

Considering that the line segments form the graph of a concave function, their
slopes will be a decreasing sequence:m1 > m2 > . . . > mr > 0. The pointar

is characterized as the only point where the left derivative off is strictly positive
and the right derivative isnegative or null, i.e.,f−(ar) > 0 andf+(ar) ≤ 0. This
property could be used to solve the global line search: Start ata0 = 0, then iterate
form break point to break point up to the first break point with a change of sign in
the lateral derivatives (next-break-point method).

The number of iterations in the next-break-point method equals the number of
break points. To avoid the potentially large number of iterations of the next-break-
point method we use theradar method. Before of introducing the radar method we
need to partition the set of lines that definef . We consideractive lines in [0,+∞[
indexed byJa, that is, lines that intersect with the graph off in more than one
point within the interval[0,+∞[. Analogously, we considerinactive lines indexed
by Ji. We also considerstrictly positive lines indexed byJ+, that is, lines with
strictly positive slope. Analogously,negative lines indexed byJ− (negative lines
may have null slope). By combining these two attributes, we partitionJ into four
classes :

J = J+ ∪ J− = J+
a ∪ J+

i ∪ J−a ∪ J−i .
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Figure 1:One of the advantages of the radar method is that,
usually, the number of iterations is smaller than the number
of break points. In this case with four break points the radar
method would take two iterations.

As we can see in Fig. 1, at iterationk, the radar method approximatesf(α) by only
two of its defining lines:rj1 for some j1 ∈ J+

a and rj2 for some j2 ∈ J−. To
introduce the radar method, we renamerj1 and rj2 by rk and sk, respectively.
rk is thesteepestactive line atαk andsk is thestopping negative line, i.e., the first
negative line that intersects withrk asα increases. The intersection point ofrk

andsk is (αk+1, rk(αk+1)), which gives the next radar iterateαk+1 and an upper
bound to the optimal value (rk(αk+1) ≥ f(α∗)). In what follows, the slope and
intercept of rk are denoted bymk and nk, respectively. That is

rk(α) = mkα + nk.

See [BH05] for more details. The radar method can be summarized as follows:

Radar method

Step 1. Initialization: Setα0 = 0 andk = 0.

Step 2. Compute next radar iterate:

αk+1 = min
{

nk − nj

mj −mk
| j ∈ J−

}
,
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Step 3. Stopping criterion: If rk(αk+1) = f(αk+1) then stop sinceαk+1 maximizes
f(α). Else, setk = k + 1 and go back to Step 1.

Remark 1 a) A single iteration version of the radar method was first used in
[BH05], thus obtaining a suboptimal solution of the line search problem (approxi-
mate OPLC line search). In this paper, the aim of the radar method is to compute
an optimal solution of the line search problem (exact OPLC line search).

b) The already mentioned next-break-point method replaces Step 2 of the radar
method by:

αk+1 = min
{

βj | βj =
nk − nj

mj −mk
, βj > αk, j ∈ J

}
. (2)

4 Convergence issues

4.1 Finite convergence of the radar method

Lemma 1 (Interval reduction) If αk ∈ [ai, ai+1[ then:

a) αk+1 ∈ [ai+1, α
∗],

b) f(αk+1) > f(α), for all α ∈ [ai, ai+1[.

c) Furthermore, fork ≥ 0 we havef(αk+1) > f(α
k
).

Proof: (a.1) Let us see thatαk+1 ≥ ai+1: In the radar method,pi+1 = (ai+1, bi+1)
is the first intersecting point that can be considered as a candidate to determine
αk+1, therefore,αk+1 ≥ ai+1.

(a.2) Let us see thatαk+1 ≤ α∗: We distinguish two cases depending on whether
the stopping linesk(α) is active atα∗. In the first case we assume thatsk(α∗) =
f(α∗) . (Proof by contradiction) In this case, ifαk+1 > α∗ thenδ := αk+1−α∗ >
0. On the one hand, by definitionrk(αk+1) = sk(αk+1). Furthermore, sincerk

is strictly increasing,rk(αk+1 − δ) < rk(αk+1) and, sincesk is non increasing,
sk(αk+1 − δ) ≥ sk(αk+1), thus

rk(αk+1 − δ) < rk(αk+1) = sk(αk+1) ≤ sk(αk+1 − δ).

Equivalently,rk(α∗) < sk(α∗) = f(α∗), which contradicts the definition off(x)
as the lower envelope of the lines{rj(α)}j∈J .

In the second case we assume thatsk(α∗) > f(α∗). (Proof by contradiction) Sup-
pose thatαk+1 > α∗. We have thatf(α∗) = ri0(α

∗) for somei0 ∈ J− (note that
ri0 is notsk sincesk(α∗) > ri0(α

∗)). Then we will have thatrk(α∗) ≥ ri0(α
∗).

Let us see the two posible subcases: In the first subcase,rk(α∗) = ri0(α
∗), which
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contradicts the fact thatsk is the first stopping plane atαk+1 > α∗. In the second
subcase,rk(α∗) > ri0(α

∗). However, considering thatrk is strictly increasing
and thatri0 is non increasing, there must existδ1 > 0 such thatrk(α∗ − δ1) =
ri0(α

∗ − δ1), which also contradicts the fact thatsk is the first stopping plane at
αk+1 > α∗ − δ1 .

(b) f(αk+1) > f(α), for all α ∈ [ai, ai+1[ sinceαk+1 ≥ ai+1 andf(α) is strictly
increasing in]−∞, α∗].

(c) Sinceαk ∈ [ai, ai+1[.

Theorem 1 The radar method converges in a finite number of iterations when it
is used solve the OPLC problem (1). The number of iterations is bounded by the
number of break points in the interval[α0, α∗].

Proof: Let {αk} be the sequence generated by the radar method. For eachαk there
exitsIk = [ai, ai+1[ such thatαk ∈ Ik. By Lemma 1 b) and c), each intervalIk

can be visited at most once sincef(α) < f(αk+1) < f(αk+2) . . ., for all α ∈ Ik.
Therefore, considering that the number of possible intervals isr, the radar method
will optimize f in at mostr iterations.

4.2 Superlinear convergence of the radar method.

In this section we show that the radar method converges superlinearly with order
at least two (see for example [Ber95] for a definition of superlinear convergence).
To show the superlinear convergence we first need two technical Lemmas.

Lemma 2 Given two points inR2, (a, y1) and (b, y2) with a 6= b, and given two
slopesm1 andm2, there exists a unique polynomial of third degree

P (x) = c0 + c1x + c2x
2 + c3x

3

such thatP (a) = y1, P (b) = y2, P ′(a) = m1 andP ′(b) = m2.

Proof: Given thatP ′(x) = c1 +2c2x+3c3x
2, it is enough to show that there exist

a solution for the following linear system whose variables arc0, c1, c2 andc3.

c0 + ac1 + a2c2 + a3c3 = y1,
c1 + 2ac2 + 3a2c3 = m1,
c1 + 2bc2 + 3b2c3 = m2,

c0 + bc1 + b2c2 + b3c3 = y2.

(3)

In matrix form 
1 a a2 a3

0 1 2a 3a2

0 1 2b 3b2

1 b b2 b3




c0

c1

c2

c3

 =


y1

m1

m2

y3


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We callA0 the coefficient matrix. To solve this system is equivalent to solve the
systems associated to the following equivalent matrices (with the equivalent right-
hand-side vectors). The first equivalent matrixA1 is equal toA0 except for the 4th
row. We obtain the 4th row by subtracting the 4th row ofA0 from the 1st row of
A0. In compact notationA1

4∗ := A0
1∗ −A0

4∗.

A1 =


1 a a2 a3

0 1 2a 3a2

0 1 2b 3b2

0 a− b a2 − b2 a3 − b3


A2 is obtained fromA1 by the operations:A2

3∗ := A1
2∗ −A1

3∗ andA2
4∗ := aA1

2∗ −
bA1

3∗ −A1
4∗.

A2 =


1 a a2 a3

0 1 2a 3a2

0 0 2(a− b) 3(a2 − b2)
0 0 a2 − b2 2(a3 − b3)


A3 is obtained fromA2 by the operation:A3

4∗ := (a + b)A2
3∗ − 2A2

4∗.

A3 =


1 a a2 a3

0 1 2a 3a2

0 0 2(a− b) 3(a2 − b2)
0 0 0 Q(a, b)


whereQ(a, b) = −(a− b)3 as we will show in the last step of the proof. Since by
hypothesis we havea 6= b thendet A3 = −2(a − b)4 6= 0. Therefore, the linear
system (3) has a unique solution andP (x) exists.

To complete the proof, let us see thatQ(a, b) = −(a − b)3. By the definition
A3

4∗ := (a + b)A2
3∗ − 2A2

4∗ we have that

Q(a, b) := 3(a + b)(a2 − b2)− 4(a3 − b3).

Finally, by considering the two basic algebraic properties

a2 − b2 = (a + b)(a− b) and a3 − b3 = (a2 + ab + b2)(a− b),

we can write:

Q(a, b) = 3(a + b)2(a− b)− 4(a2 + ab + b2)(a− b)
= [3(a + b)2 − 4(a2 + ab + b2)](a− b)
= −[a2 − 2ab + b2](a− b)
= −(a− b)3.
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Lemma 3 Let us consider the set of points{(ai, yi) ∈ R2}i∈K whereK = {0, . . . , nk}
and ai < ai+1 for all i ∈ K \ {nk}. Let us also consider the set of slopes
{mi ∈ R}i∈K . Then, there exists a smooth functionQ(x) such thatQ(ai) = yi

andQ′(ai) = mi for all i ∈ K.

Proof: Let us consider the intervalI = [a0, ank
] and the covering

I1 ∪ I2 ∪ . . . ∪ Ink
= [a0, a1] ∪ [a1, a2] ∪ . . . ∪ [ank−1, ank

].

By Lemma 2, for each intervalIi, i ∈ K, there exists a unique third degree poly-
nomial, sayPi(x), such thatPi(ai−1) = yi−1, Pi(ai) = yi, P ′

i (ai−1) = mi−1 and
P ′

i (ai) = mi. To finish the proof it is enough to define

Q(x) :=


P1(x) if x ∈ I1,
...
Pnk

(x) if x ∈ Ink
.

Now we define two auxiliary functions,g andh, that will be used to proof the
superlinear convergence of the radar method.g will be defined as a simplified
version of the main functionf , andh will be defined as a smooth version ofg.
The idea of the proof is simple: The superlinear convergence of Newton’s method
when solving the equationh(x) = f(α∗), will induce superlinear convergence of
the radar method when maximizingg andf .

First, let us defineg as the lower envelope of a set of lines. This set contains
the strictly positive lines and the horizontal line that passes through the point
(α∗, f(α∗)). To be more precise

g(α) := min
(
{rj(α) | j ∈ J+

a } ∪ {r∗(α)}
)
,

where we have used the constant functionr∗(α) := f(α∗) for all α. It is easy to
see that

g(α) =
{

f(α) if α ≤ α∗

f(α∗) if α > α∗.

Furthermore, to ease the notation in what follows, we define

yk := g(βk) = rk(βk) and y∗ := g(β∗) = r∗(β).

Secondly, let us defineh as a smooth approximation to the lower envelope of
the strictly positive lines. To be more precise, to defineh we consider the fi-
nite sequence of points generated by the radar method to maximize the auxiliary
function g, that we denote by{(βk, yk) ∈ R2}k∈K , with K := {0, . . . , nk}.
We also consider the associated sequence ofsteepestactive lines{rk}k∈K , with
rk(β) = mkβ + nk. By Lemma 3, there exist a smooth function, sayh(x), such
thath(βk) = yk andh′(βk) = mk for all k ∈ K.
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Proposition 1 Let us consider{xk | k ≥ 0}, the sequence of iterates generated
by Newton’s method to solve the equationh(x) − y∗ = 0. Let us also consider
{βk}k∈K with K = {0, . . . , nk}, the sequence of iterates generated by the radar
method to maximizeg(α). If x0 = β0 then:

1. Newton’s sequence and the radar sequence are identical for allk ∈ K.

2. Newton’s sequence converges at iterationnk.

3. The radar sequence converges superlinearly with order at least two.

Proof: 1) Let us definẽh(x) := h(x)−y∗. In order to solve the equatioñh(x) = 0,
Newton’s iterates are computed as

xk+1 = xk − h̃(xk)

h̃′(xk)
= xk − h(xk)− y∗

h′(xk)
,

from where

xk+1 = xk +
y∗ − yk

mk
. (4)

On the other hand, in the radar method, the slopemk can be expressed as

mk =
y∗ − yk

βk+1 − βk

from where

βk+1 = βk +
y∗ − yk

mk
. (5)

By hypothesis we havex0 = β0, therefore, by equations (4-5) and applying induc-
tion we will havexk = βk for all k ∈ K.

2) The optimal iterate for the radar method isβnk what means

g(β0) < g(β1) < · · · < g(βnk) = y∗

m

y0 < y1 < · · · < ynk = y∗

m

h(x0) < h(x1) < · · · < h(xnk) = y∗

as we wanted to prove.

3) It is well known that when Newton’s method converges, as in this case, it con-
verges superlinearly with order at least two [Ber95]. By the first statement of this
theorem, the radar method inherits the convergence rate of Newton’s method.

So far we have considered{βk}k∈K , the sequence generated by the radar method
to maximize the auxiliary functiong. Let us consider now the sequence generated

9



by the radar method to maximize the main functionf , that we denote{αk}k∈L

with L := {1, . . . , nl}. The objective of the following three lemmas is to show
that βk ≤ αk for all k ∈ K ∩ L. This will allow us to prove the superlinear
convergence of the radar method at the end of this section.

Lemma 4 If βk = αk thenβk+1 ≤ αk+1 for all k ∈ K ∩ L

Proof: (Proof by contradiction) Ifαk+1 < βk+1, then, considering thatrk is
strictly increasing, we have

rk(αk+1) < rk(βk+1) = y∗. (6)

Now, let us consider the first non positive linesk that determinesαk+1 by the
equation

rk(αk+1) = sk(αk+1) (7)

From (6) and (7), we have
sk(αk+1) < y∗ (8)

Furthermore, by definition off(α)

sk(α∗) ≥ y∗ (9)

It turns out thatαk+1 < α∗, because by Lemma 1αk+1 ≤ α∗ and from (8) and
(9), we know thatαk+1 6= α∗. Putting all together, we haveαk+1 < α∗ and
sk(αk+1) < y∗ ≤ sk(α∗), which implies thatsk has strictly positive slope. This
contradicts the fact thatsk is a non positive line.

We now considerγk+1, the iterate generated by the radar method applied to maxi-
mizeg(α) when starting at any arbitrary pointγk ∈ [0, α∗].

Lemma 5 If βk ≤ γk thenβk+1 ≤ γk+1 for all k ∈ K.

Proof: Let us considerrβ andrγ , the active lines atβk andγk, respectively. We
encounter two cases.

a) First case:rβ andrγ are the same line. In this case by the definition of the radar
method,βk+1 = γk+1.

b) Second case:rβ andrγ are different lines. If we denote by,mβ andmγ the
slopes ofrβ andrγ , respectively, we will havemβ > mγ , sinceβk < γk.

Let us denote byyk
β andyk

γ the scalarsrβ(β
k
) andrγ(γ

k
), respectively. By the

definition of g, the only possible stopping line isr∗ and therefore we have that
βk+1, is determined by the equationrβ(βk+1) = r∗(βk+1). Sincer∗(βk+1) = y∗,
we haverβ(βk+1) = y∗. For this reason the points(βk, yk

β) and(βk+1, y∗) are in
the graph of the linerβ, and can be used to determine its slopemβ :

mβ =
rβ(βk+1)− rβ(β

k
)

βk+1 − βk =
y∗ − yk

β

βk+1 − βk ,
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from where,

βk+1 = βk +
y∗ − yk

β

mβ

±yk
γ/mβ

= βk +
yk

γ − yk
β

mβ
+

y∗ − yk
γ

mβ
.

(10)

Let us see now that,

βk +
yk

γ − yk
β

mβ
≤ γk. (11)

Otherwise,
yk

γ > yk
β + mβ(γk − βk),

which contradicts the fact that

yk
β + mβ(γk − βk) ≥ g(γk) = yk

γ .

From (10) and (11):

βk+1 ≤ γk +
y∗ − yk

γ

mβ

< γk +
y∗ − yk

γ

mγ
(sincemβ > mγ)

= γk+1.

Lemma 6 If β0 = α0 thenβ
k ≤ α

k
for all k ∈ K ∩ L.

Proof: (Proof by induction)
If β0 = α0 thenβ1 ≤ α1 (Lemma 4).
Analogously, ifγ1 := α1 thenγ2 ≤ α2 (Lemma 4).
Given thatβ1 ≤ α1 = γ1 thenβ2 ≤ γ2 (Lemma 5).
Thus,β2 ≤ α2.

To complete our proof, assume thatβ
k ≤ α

k
and let us see thatβk+1 ≤ αk+1.

If γk := αk thenγk+1 ≤ αk+1 (Lemma 4).
Given thatβk ≤ αk = γk thenβk+1 ≤ γk+1 (Lemma 5).
Thus,βk+1 ≤ αk+1.

Theorem 2 The radar method, used to solve the OPLC problem (1), converges in
a finite number of iterations. Furthermore, the convergence is superlinear with
order at least two.
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Proof: Without loss of generality, we can assume thatα0 = β0 = 0. By Lemma 1,
we have thatαk ∈ [0, α∗] for all k ∈ L. Applying Lemma 6 we can further reduce
this interval such thatαk ∈ [βk, α∗] for all k ∈ K ∩ L. The proof of the first
statement is completed by considering thatβnk = α∗, which impliesαk = α∗

for somek ∈ L. This also shows that the rate of convergence of{αk}k∈L is at
least the rate of convergence of the sequence{βk}k∈K , which by Proposition 1 is
superlinear with order at least two.

5 Numerical test

The objective of this example is to illustrate the performance of the radar method
applied to maximize an one-dimensional piecewise linear concave (OLPC) fun-
ction either with a few or thousands of break points. We compare the performances
of the radar, next-break-point and golden section methods.

All the programs have been written in Matlab 7.0 [HH00]. A difference between
the radar and the golden section method is that in the first we compute anexact
solution and in the second we compute aninterval of uncertainty that contains the
solution. For this test, we stop the golden section iterations when the length of this
interval is less than10−6. All programs have been run on a PC (Pentium-IV, 3
GHz, with 3 GB of RAM memory) under the Windows XP operating system.

For the studied problem, up to our knowledge, there are no public instance data
bases. We have generated two different sets of instances.

5.1 Instances with a small number of break points

We solve ten randomly generated OPLC instances. Each instance is generated by
taking a collection ofNl random lines (from 10 to 500,000 lines). Each linerj is
defined by a point(aj , bj) and a slopemj , with aj and bj uniformly distributed
in [0, 1] and mj uniformly distributed in [−1, 1] (j = 1, . . . , Nl).

The test results are displayed in two tables. In Table 1 we report the problem des-
cription and the optima obtained.In Table 2 we report the number of iterations and
CPU time for the three methods. We observe that the number of break points in the
interval[0, α∗] is 1 or 2 (the same as the number of next-break-point iterations). As
expected, the golden section method does not take advantage of this small amount
of break points and on average performs 38 iterations. The performance of the ra-
dar and next-break-point method is very similar. For the cases with a large number
of lines, on average, the radar method needs a quarter of the time needed by the
golden section method.
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Table 1:Problem description.

Number Optimum

Instance of lines α∗ f(α∗)
oplc01 10 0.8957 0.1634
oplc02 50 0.5060 0.0336
oplc03 100 0.6066 -0.2432
oplc04 500 0.4598 -0.2238
oplc05 1000 0.5533 -0.3458
oplc06 5000 0.4968 -0.3658
oplc07 10000 0.4557 -0.4008
oplc08 50000 0.4918 -0.4480
oplc09 100000 0.5009 -0.4536
oplc10 500000 0.4973 -0.4805

Table 2: Influence of the number of break points. NBP stands for
‘next-break-point’ method. CPU Time under 0.01 seconds are not
reported. (*) Average CPU time only accounts for cases 06 to 10.

Iterations CPU time (sec.)

Instance Radar NBP Golden Radar NBP Golden
oplc01 3 3 39 - - -
oplc02 1 1 40 - - -
oplc03 1 1 36 - - -
oplc04 1 1 38 - - -
oplc05 1 1 39 - - -
oplc06 1 1 39 - - 0.03
oplc07 2 2 39 0.03 - 0.02
oplc08 1 1 39 0.03 - 0.11
oplc09 1 1 38 0.05 0.03 0.23
oplc10 2 2 37 0.30 0.20 1.19

Average (*) 1 1 38 0.08 0.05 0.32
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Table 3:Problem description.

Number Optimum

Instance of lines ∆b ∆m α∗ f(α∗)
oplc11 10 0.5 0.05 56.6661 142.5815
oplc12 100 0.5 0.05 46.6278 142.6647
oplc13 1000 0.5 0.05 52.1655 126.0272
oplc14 10000 0.5 0.05 49.3297 125.3751
oplc15 100000 0.5 0.05 49.9642 125.0443
oplc16 10 0 0 48.0761 125.5347
oplc17 100 0 0 49.6130 125.0459
oplc18 1000 0 0 50.0001 125.0002
oplc19 10000 0 0 50.0037 125.0000
oplc20 100000 0 0 50.0000 125.0000

5.2 Instances with a large number of break points

The objective of this section is to maximize OPLC instances with a number of
break points that ranges from small to very large, in contrast with the instances of
the first set. We solve ten randomly generated OPLC instances derived from the
quadratic functionq(α) = −(1/20)α2+5α, with q(0) = q(100) = 0 andq(α∗) =
q(50) = 125). Each OPLC instance is generated by taking a random collection
of Nl lines from the family of lines that lay above the epigraph ofq (from 10 to
100,000 lines).Given two positive tolerances∆b and ∆m, each linerj is defined
by a point(aj , bj) and a slopemj , with aj , bj andmj uniformly distributed in
[0, 100], [q(aj), (1 + ∆b)q(aj)] and[(1−∆m)q′(aj), (1+∆m)q′(aj)] respectively
(j = 1, . . . , Nl). We give the values of∆b and ∆m in Table 3.

The test results are displayed in two tables. In Table 3 we report the problem
description and the optima obtained. Note that when∆b and∆m are 0 (instances
oplc16-oplc20 in Table 3), the lines are tangent to the graph ofq. In this case the
number of break points in the interval[0, α∗] is approximatelyNl/2 (see column
‘Iterations NBP’ in Table 4 for instances oplc16-oplc20).

In Table 4, we report the performance in terms of number of iterations and CPU
time. Obviously one would not use the next-break-point method for the problems
with a very large number of break points (e.g. instances oplc19-oplc20). We have
used it in order to count the number of break points between 0 and the optimal
point. We observe thatthe number of radar iterations is independent from the
number of break points.Furthermore, the very low number of radar iterations
is explained by its superlinear rate of convergence.For the cases with a large
number of lines, on average, the radar method need half of the time needed by the
golden section method.
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Table 4: Influence of the number of break points. NBP stands for
‘next-break-point’ method. CPU Time under 0.01 seconds are not
reported. (*) Average CPU time only accounts for cases 14, 15 and 18
to 20.

Iterations CPU time (sec.)

Instance Radar NBP Golden Radar NBP Golden
oplc11 2 2 41 - - -
oplc12 3 5 38 - - -
oplc13 4 10 32 - - -
oplc14 5 23 37 0.02 0.05 0.02
oplc15 6 44 38 0.06 0.75 0.25
oplc16 3 3 39 - - -
oplc17 6 51 36 - - -
oplc18 9 526 38 - 0.09 -
oplc19 13 5063 38 0.03 6.81 0.05
oplc20 14 49873 35 0.11 849.31 0.23

Average (*) 7 5560 37 0.04 177.56 0.11

6 Conclusions

In this paper we have improved the so-called radar method, a method intended to
optimize one-dimensional piecewise linear concave (OPLC) functions, defined as
the lower envelope of a finite set of lines. The method is thus well suited for exact
OPLC line search, that arises for example in the framework of the Kelley cutting
plane method.

From a theoretical point of view, we have established finite and superlinear
convergence with order at least two for the radar method. The other advan-
tage of the radar method is that the number of iterations does not depend on
the number of break points.

From a practical point of view we have observed that the number of radar iterations
is very small and independent of the number of break points, as predicted by the
theory. For a large number of break points the performance of the radar method is
similar if not better than the golden section method, a representative derivative-free
line search method. However, in the case of very few break points, the radar met-
hod is clearly superior to this type of methods since the number of radar iterations
is bounded by the number of break points.

All in all, the radar method seems the most effective method to maximize an OPLC
function. Even if the CPU time per line search is small, typically one performs
thousands of these line searches in methods such as the Kelley cutting plane met-
hod. Therefore, the total CPU time saving may not be negligible if one uses the
radar method. An additional advantage is that the radar method computes an exact
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optimizer in contrast with the golden method or similar, which compute an ap-
proximated optimizer. In general, exact optimizers are better suited for active set
optimization methods.
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