An Effective Line Search for the Subgradient Method

C. BELTRAN† F. J. HEREDIA‡

November 10, 2004

Abstract

One of the main drawbacks of the subgradient method is the tuning process to determine the sequence of steplengths. In this paper, the radar subgradient method, a heuristic method designed to compute a tuning-free subgradient steplength, is geometrically motivated and algebraically deduced. The unit commitment problem, which arises in the electrical engineering field, is used to compare the performance of the subgradient method with the new radar subgradient method.

Keywords: Lagrangian relaxation, multiplier updating, subgradient method, radar subgradient method, unit commitment.

1 Introduction

The objective of this paper is to improve the subgradient method which is used to solve nondifferentiable optimization problems as for example the Lagrangian dual problem. One of the main drawbacks of the subgradient method is the tuning process to determine the sequence of steplengths to update successive iterates. To avoid this, we propose the radar subgradient method, a heuristic method designed to compute a tuning-free subgradient steplength.

†Researcher, Logilab, HEC, University of Geneva, Switzerland.
‡Professor, Department of Statistics and Operations Research, Polytechnical University of Catalonia, Barcelona, Spain.
It is well known that the dual function is a concave function over its domain (regardless of the structure of the cost and constraints of the primal problem), but not necessarily differentiable (Ref. 1, chapter 5). If there is no duality gap, that is, if the optimal values of the primal problem and the dual problem are equal, then a solution of the dual problem provides a solution of the primal problem. We solve the dual problem whenever it is easier to solve than the primal problem and there is no duality gap. However, even if there is a duality gap the solution of the dual problem provides a lower bound to the primal optimum that can be useful, for example, in combinatorial optimization. Further details can be found in Ref. 1, 2 and a more in-depth theoretical point of view in Ref. 3.

There are two main methods to maximize the dual function (Ref. 1, 3): the subgradient method and the cutting-plane method (although we could call them families of methods since each method has its own variants).

First, in the subgradient method, the Lagrangian multipliers λ_n (dual variables) are updated as $\lambda_{n+1} = \lambda_n + \alpha_n \cdot s_n/\|s_n\|$, where, s_n is a subgradient of the dual function at the current iterate λ_n. In this case, if $\lim_{n \to \infty} \alpha_n = 0$ and $\sum_{n=0}^{\infty} \alpha_n = +\infty$, convergence is guaranteed (Ref. 4). If the dual function is non-differentiable, the subgradient method may progress slowly to the optimum in an oscillating fashion.

The steplength α_n is usually chosen as $\alpha_n = 1/(a + bn)$ (basic rule), or more often as $\alpha_n = \beta_n(\hat{q}_n - q(\lambda_n))/\|s_n\|$ (Polyak II rule), where $q(\lambda_n)$ is the dual function at the current iterate, \hat{q}_n is an upper bound to the dual optimum and $\beta_n \in [0, 2]$ (Ref. 1). A less common choice is $\alpha_n = ab^n$, which may yield a geometric rate of convergence if parameters a and b are carefully selected, but without guaranteed convergence (Ref. 5, page 9). Thus, another drawback of the subgradient method is the non-trivial tuning parameter associated with some of the available choices for α_n.

Second, in the Kelley’s cutting-plane method (Ref. 6), the new iterate is obtained by maximizing an outer approximation of the dual function, given by a collection of cutting-planes (hyperplanes). Unlike the subgradient method, the cutting-plane method does not suffer from oscillations, and proper stopping criteria can be used, but the computational burden can be high depending on the implementation. The dynamically constrained cutting-plane method avoids this high computational burden by limiting the number of approximating hyperplanes (Ref. 2).

The pure cutting-plane method usually gives a slow and unstable performance, especially around the optimum (Ref. 7). To overcome this unstability, the cutting-plane method is often used in augmented form (bundle method, Ref. 3, 7–10), where a quadratic penalty is appended to the objective function.

The newest version of the cutting-plane method is the Analytical Center Cutting-Plane method (ACCPM) (Ref. 11, 12). Roughly speaking, at each iteration, ACCPM searches for the analytical center of the polyhedron associated to the outer approxima-
tion of the dual function given by the cutting-planes. The sophisticated ACCPM code has proved to be efficient and robust (Ref. 13).

In spite of the drawbacks of the subgradient method, it is still a popular method since it is very simple to implement, and because of its small computational burden. Furthermore, although the theoretical rate of convergence for pure subgradient algorithms is at best linear (Ref. 14), experience shows that their practical efficiency is good, especially for large scale, structured optimization problems.

For this reason, the subgradient method is still a subject of active research. Thus, for example, in Ref. 15 faster initial convergence of the subgradient method is achieved using exponentially weighted subgradients. The volume algorithm (Ref. 16), derived from the subgradient method, has a much better stopping criterion compared to the basic subgradient method. Another variant of the subgradient method, the incremental subgradient method, results in a much better practical rate of convergence than the subgradient method (Ref. 17). The ball-step subgradient level method can be surprisingly effective when low solution accuracy is acceptable, as happens in many applications (Ref. 18).

The paper is divided into four sections. In this first section we have given a short introduction to the subgradient and cutting-plane methods. In the second section an effective steplength for the subgradient method is geometrically motivated and algebraically described. In the third section, a set of instances of the well known unit commitment problem are used to compare the efficiency of the basic subgradient with the new method. Conclusions are given in the fourth section.

1.1 Notation

Let us suppose we wish to solve the following primal problem (P):

\[
\begin{align*}
\min \quad & f(x), \\
\text{s.t.} \quad & h(x) = 0, \\
\quad & x \in D,
\end{align*}
\]

(1a) (1b) (1c)

where \(f(x) : \mathbb{R}^n \to \mathbb{R} \) and \(h(x) : \mathbb{R}^n \to \mathbb{R}^m \), and \(D \) is a nonempty compact set in \(\mathbb{R}^n \).

As usual, the (Lagrangian) dual problem (D) of (P) is

\[
\max_{\lambda \in \mathbb{R}^m} \left\{ \min_{x \in D} f(x) + \lambda^t h(x) \right\}.
\]

(2)

Equivalently, with the Lagrangian function \(L(x, \lambda) := f(x) + \lambda^t h(x) \), the dual prob-
lem can be written as
\[\max_{\lambda \in \mathbb{R}^m} \left\{ \min_{x \in \mathcal{D}} L(x, \lambda) \right\}. \] (3)

For short, defining the dual function
\[q(\lambda) := \min \{ L(x, \lambda) : x \in \mathcal{D} \}, \] (4)
the dual problem has the expression
\[\max_{\lambda \in \mathbb{R}^m} q(\lambda). \] (5)

Other symbols used through the paper are:

- \(n \) iteration index.
- \(\{\alpha_n\} \) sequence of positive scalars (for example a subgradient steplength sequence).
- \(\lambda_n \) Lagrange multiplier vector at iteration \(n \).
- \(q_n := q(\lambda_n) \).
- \(\partial q(\lambda_n) \) subdifferential of \(q \) at \(\lambda_n \).
- \(s_n \) subgradient of \(q \) at \(\lambda_n \). That is, \(s_n \in \partial q(\lambda_n) \).
- \(z_n(\lambda) : \mathbb{R}^m \rightarrow \mathbb{R} \), affine function defined as \(z_n(\lambda) = q_n + s_n'(\lambda - \lambda_n) \).
- \(SP_n := \{ (\lambda, z) \in \mathbb{R}^m \times \mathbb{R} : z = z_n(\lambda) \} \), supporting plane of \(q(\lambda) \) at \(\lambda_n \) (associated to \(s_n \)), i.e. \(z_n(\lambda_n) = q_n \) and \(z_n(\lambda) \geq q(\lambda) \), for all \(\lambda \in \mathbb{R}^m \).

2 Radar Subgradient Method

2.1 Motivation

On the one hand, the cutting-plane method, unlike the subgradient method, takes advantage of the first order information generated each time \(L(x, \lambda) \) is minimized. Given that \(h(x_n) \) is a subgradient of \(q(\lambda_n) \), eventually, the cutting-plane method builds up an accurate first order approximation of the dual function \(q(\lambda) \). Then, instead of tuning a sequence of steplengths, as in the subgradient method, the cutting-plane method works upon an increasingly accurate knowledge of the dual function.
On the other hand, the subgradient method, unlike the cutting-plane method, takes advantage of the subgradient direction generated each time $L(x, \lambda)$ is minimized, that is, the subgradient method converges to an optimal point using $h(x_n) \in \partial q(\lambda_n)$.

Although $h(x_n)$ may not be an ascent direction, it determines a new iterate closer to an optimizer if a suitable steplength is taken (Ref. 1, chapter 6). Furthermore, considering that the dual function is the lower envelope of a set of affine functions $\varphi_x(\lambda) := f(x) + \lambda' h(x)$, very often the dual function will not be smooth at the optimal points, but in many other points it will be smooth, that is, $h(x_n)$ will be the steepest ascent direction $\nabla q(\lambda_n)$. All in all, in many iterations the subgradient $h(x_n)$ should be an effective direction if complemented with a careful choice of steplength. Consequently, it seems promising to try to avoid the steplength tuning of the subgradient method by incorporating the first order information about the dual function $q(\lambda)$ exploited by the cutting-plane method, while saving the low computational burden of the subgradient method. This is the philosophy of the radar subgradient method presented herein.

The objective of the radar subgradient method is to maximize any concave function $q(\lambda)$ without constraints, as it is the case of the unconstrained dual problem (5). This method uses the same information as the cutting-plane method but in a different way. The supporting planes obtained in the course of the optimization give a first order approximation of $q(\lambda)$. The cutting-plane method directly maximizes the function induced by the successive approximations of $q(\lambda)$, whereas the radar subgradient method uses the approximation to $q(\lambda)$ in order to compute the steplength along the subgradient direction. We used this idea to develop the radar gradient method (Ref. 19) within the framework of augmented Lagrangian relaxation, whose dual function is differentiable. The radar gradient method was compared to the multiplier method from a practical point of view and the performance of the two methods was similar.

Another multiplier updating method that shares the same philosophy (subgradient plus cutting-planes) can be found in Ref. 20, although it is based on the bundle method rather than the basic cutting-plane method and the resulting updating procedure is different from the one we propose.

2.2 Geometry and Algebra

To derive the radar subgradient method we distinguish three cases:

Case 1: Radar Steplength

The basic geometrical intuition of the radar steplength is displayed in Figure 1. Please note that we use a one-dimensional $q(\lambda)$ to introduce the radar subgradient method. The central idea of the radar subgradient method is to perform a line search along the subgradient direction by using the first order approximation to $q(\lambda)$. In the optimization process of $q(\lambda)$ we obtain function values q_k and subgradients s_k of
Figure 1: The Radar steplength

Figure 2: Positive and negative planes
$q(\lambda), k = 1, \ldots, n$, which allow us to build the supporting planes SP_1, \ldots, SP_n. The lower envelope of these supporting planes gives a first order approximation of $q(\lambda)$. To simplify, in this one-dimensional example, we assume the first order approximation to $q(\lambda)$ is based on three supporting planes SP_n, SP_{n-1} and SP_{n-2}. In this case, to compute the steplength from λ_n to λ_{n+1}, first, we compute the points $p_{n-1} := SP_n \cap SP_{n-1}$ and $p_{n-2} := SP_n \cap SP_{n-2}$. Second, we project p_{n-1} and p_{n-2} on the subgradient direction obtaining $q_{n-1} := \text{proj}(p_{n-1})$ and $q_{n-2} := \text{proj}(p_{n-2})$. Third, λ_{n+1} is defined as the closest projection to λ_n, that is, q_{n-2}.

Arbitrarily enough, we call the previous procedure the radar subgradient method considering that, as we can see in Figure 1, the method detects the first supporting plane that would be detected by a radar station pointing in the direction given by SP_n. Naturally, the radar steplength will refer to the steplength associated to the radar subgradient method.

In the following proposition we show how to compute the radar steplength β_n. Note that, unlike in the bundle method or in the cutting-plane method, we update the vector of multipliers λ_n without solving any optimization problem.

Let us consider:

$\Lambda_n(\beta) : \mathbb{R} \rightarrow \mathbb{R}^m$, vector-valued mapping defined as $\Lambda_n(\beta) = \lambda_n + \beta s_n$.

$R_n := \{\Lambda_n(\beta) \in \mathbb{R}^m : \beta \in \mathbb{R}\}$, straight line of candidates to λ_{n+1}.

$y_{n,k}(\beta) : \mathbb{R} \rightarrow \mathbb{R}$, affine function defined as $y_{n,k}(\beta) = q_k + s_k^t (\Lambda_n(\beta) - \lambda_k), (k = 0, \ldots, n)$.

$r_{n,k} := \{(\beta, y) \in \mathbb{R} \times \mathbb{R} : y = y_{n,k}(\beta)\}$, straight line defined on SP_k when λ moves along $R_n, (k = 0, \ldots, n)$.

$(\beta_{n,k}, \hat{y}_{n,k}) \in \mathbb{R} \times \mathbb{R}$, intersection point of the straight lines $r_{n,k}$ and $r_{n,n}, (k = 0, \ldots, n-1)$.

β_n steplength from λ_n to λ_{n+1} given by the radar subgradient method, i.e. $\lambda_{n+1} = \lambda_n + \beta_n s_n$.

Ω_n set of the positive steps from λ_n, i.e. $\Omega_n := \{\beta_{n,k} : \beta_{n,k} > 0, k = 0, \ldots, n-1\}$.

Proposition 2.1 If $q(\lambda) : \mathbb{R}^m \rightarrow \mathbb{R}$ is a concave function then:

(a) If $(s_n - s_k)^t s_n = 0$ then $r_{n,n}$ is parallel to $r_{n,k}$ and therefore one should not compute $\beta_{n,k}$.

7
(b) If \((s_n - s_k)'s_n \neq 0\) then \(r_{n,n}\) is not parallel to \(r_{n,k}\) and
\[
\beta_{n,k} = \frac{q_k - q_n + (\lambda_n - \lambda_k)'s_k}{(s_n - s_k)'s_n} \quad k = 0, \ldots, n - 1.
\] (6)

(c) If \(\Omega_n \neq \emptyset\), the radar steplength can be computed as
\[
\beta_n = \min \Omega_n.
\] (7)

Proof.

(a) If \((s_n - s_k)'s_n = 0\) then \(s_n's_n = s_k's_n\) which means, as we will see in Proposition 2.2, that the straight lines \(r_{n,n}\) and \(r_{n,n}\) have the same slope, that is, \(r_{n,n}\) and \(r_{n,n}\) are parallel and it does not make sense to compute \(\beta_{n,k}\).

(b) Analogously to case (a), we have that \(r_{n,n}\) and \(r_{n,n}\) have different slopes and therefore it makes sense to compute \(\beta_{n,k}\), which can be computed as follows. By definition
\[
\Lambda_n(\beta) = \lambda_n + \beta s_n,
\]
\[
y_{n,n}(\beta) = q_n + s_n'(\Lambda_n(\beta) - \lambda_n),
\]
\[
y_{n,k}(\beta) = q_k + s_k'(\Lambda_n(\beta) - \lambda_k).
\]
Then
\[
y_{n,n}(\beta) = q_n + s_n'(\lambda_n + \beta s_n - \lambda_n) = q_n + s_n'(\lambda_n - \lambda_n),
\]
\[
y_{n,k}(\beta) = q_k + s_k'(\lambda_n + \beta s_n - \lambda_k).
\]

At the intersection point of \(r_{n,n}\) and \(r_{n,k}\) it happens that \(y_{n,n}(\beta) = y_{n,k}(\beta)\), hence
\[
q_n + s_n'(\beta s_n) = q_k + s_k'(\lambda_n + \beta s_n - \lambda_k),
\]
\[
q_n + \beta s_n's_n = q_k + s_k'(\lambda_n - \lambda_k) + \beta s_k's_k,
\]
\[
\beta(s_n - s_k)'s_n = q_k - q_n + (\lambda_n - \lambda_k)'s_k.
\]

Therefore, the intersection point \((\beta_{n,k}, \hat{y}_{n,k})\) is defined by the step
\[
\beta_{n,k} = \frac{q_k - q_n + (\lambda_n - \lambda_k)'s_k}{(s_n - s_k)'s_n}, \quad k = 0, \ldots, n - 1.
\]

(c) Given that the aim of the radar subgradient method is to maximize \(q(\lambda)\) following the subgradient direction, only positive length steps \(\beta_{n,k} \quad (k = 0, \ldots, n - 1)\) will be
taken. We wish to stop with the first intersection point among the points \(\{(\beta_{n,k}, \hat{y}_{n,k}) : k = 0, \ldots, n-1\} \), thus the minimum positive \(\beta_{n,k} \) must be chosen. Thus

\[
\beta_n = \min\{\beta_{n,k} : \beta_{n,k} > 0, \ k = 0, \ldots, n-1\} = \min \Omega_n.
\]

\[\square\]

Case 2: Positive and Negative Planes

In Figure 2 we repeat the computation of a radar step for the one-dimensional example, i.e. we compute the intersection of all the supporting planes with \(SP_n \), we project these intersections on the subgradient direction and we take \(\lambda_{n+1} \) as the closest projection to \(\lambda_n \). Now the difference is that we do not take into account \(SP_{n-1} \) because its slope has the same sign as the slope of \(SP_n \). Our intuition is that taking into account supporting planes with the slope sign of \(SP_n \) would stop the radar subgradient progress prematurely. This intuition has been confirmed by preliminary computational tests.

Let us define \(m_{n,k} \) as the slope of the straight line \(r_{n,k} k = 0, \ldots, n \). Next proposition shows how to compute \(m_{n,k} \).

Proposition 2.2 Let \(q(\lambda) : \mathbb{R}^m \rightarrow \mathbb{R} \) be a concave function and let us follow the notation of the above proposition. The slope of the straight line \(r_{n,k} k = 0, \ldots, n \), can be computed as:

\[
m_{n,k} = s_n^ts_k.
\]

(8)

Proof. The straight line \(r_{n,k} \) is defined by the affine function \(y_{n,k}(\beta) = q_k + s_k^t(\Lambda_n(\beta) - \lambda_k) \). Let us express \(y_{n,k}(\beta) \) as \(b_k + m_{n,k}\beta \).

\[
\begin{align*}
y_{n,k}(\beta) &= q_k + s_k^t(\Lambda_n(\beta) - \lambda_k) \\
 &= q_k + s_k^t(\lambda_n + \beta s_n - \lambda_k) \\
 &= q_k + s_k^t(\lambda_n - \lambda_k) + s_n^ts_k\beta,
\end{align*}
\]

whence \(b_k = q_k + s_k^t(\lambda_n - \lambda_k) \) and \(m_{n,k} = s_n^ts_k \), as we wanted to prove. \(\square \)

Inspired by Figure 2 and the above proposition, we say that the supporting plane \(SP_k \) defined by the point \((\lambda_k, q_k) \) and the subgradient \(s_k (k < n) \) is a **positive plane relative to** \(\lambda_n \) if \(r_{n,k} \) has a positive slope, that is, if \(m_{n,k} > 0 \). If \(m_{n,k} \) is not greater than zero, we say that \(SP_k \) is a **negative plane relative to** \(\lambda_n \).

Case 3: Lack of negative planes

If the first order approximation of \(q(\lambda) \) along the subgradient direction is based only on a set of positive planes, i.e. \(\Omega_n = \emptyset \), then the radar steplength from \(\lambda_n \) to \(\lambda_{n+1} \) cannot be computed and arbitrarily we take a classical subgradient steplength instead.
2.3 Algorithm

Joining the three cases discussed in the above section the radar subgradient algorithm can be displayed as:

Radar Subgradient Algorithm

Step 0 Initialize. Set $n = 0$, λ_0 and N_{iter}.

Step 1 Compute $q(\lambda_n)$. Compute q_n and $s_n \in \partial q(\lambda_n)$. Store s_n, q_n and λ_n.

Step 2 Check the stopping criterion. If λ_n does not improve for the last N_{iter} iterations or n reaches a prefixed value then stop.

Step 3 Compute the step length.

- Compute $m_{n,n} := s_n^t s_n$.
- For $k = 0, \ldots, n - 1$:
 * Compute $m_{n,k} := s_n^t s_k$.
 * If $m_{n,k} > 0$ reject the positive plane SP_k by setting $\beta_{n,k} := -1$.
 Otherwise, if $m_{n,n} - m_{n,k} \neq 0$, compute
 \[
 \beta_{n,k} := \frac{q_k - q_n + (\lambda_n - \lambda_k)^t s_k}{m_{n,n} - m_{n,k}}.
 \]

There are two cases depending on
\[
\Omega_n := \{\beta_{n,k} : \beta_{n,k} > 0, \ k = 0, \ldots, n - 1\}:
\]

a) If $\Omega_n \neq \emptyset$, then set $\beta_n := \min \Omega_n$.

b) If $\Omega_n = \emptyset$, then set $\beta_n := \alpha_n$, for a prefixed sequence $\{\alpha_n\}$.

Step 4 Compute $\lambda_{n+1} = \lambda_n + \beta_n s_n$. Set $n = n + 1$ and go back to step 1.

In our implementation of the radar subgradient algorithm we use sequences $\{\alpha_n\}$ such that $\lim_{n \to \infty} \alpha_n = 0$ and $\sum_{n=0}^{\infty} \alpha_n = +\infty$ (classical subgradient step length sequences). Furthermore, good computational results are obtained using pure classical subgradient steps for the first, say, 10 iterations, that is, $\beta_n = \alpha_n$ for $n = 1, 2, \ldots, 10$.

Note that in step 2 the radar subgradient method inherits the typical stopping criterion used by the classical subgradient method. In spite of its generalized use, with this criterion we cannot ensure the dual optimality of the best computed point. Nevertheless, in many applications the accuracy obtained using this stopping criterion will suffice. For example, this is the case of the dual bound computing in combinatorial optimization.
3 Numerical results

The objective of this section is to compare the performance of the subgradient method with the radar subgradient method. The two methods are compared by using a set of large-scale unit commitment instances. The aim of the unit commitment problem is to optimize electricity production, considering a short-term planning horizon (from one day to one week). Hydroelectric and thermal plants must be coordinated in order to satisfy the customer demand for electricity at minimum cost and with a reliable service. Some examples of unit commitment literature are Ref. 19, 21, 22. The unit commitment problem decides, for each subperiod of the planning horizon, when a thermal unit is on or off, that is, when it is producing electricity and when it is shut down. These on/off decisions are of a binary nature and turn the unit commitment problem into a difficult mixed integer programming problem. Solving the associated dual problem is a key point for most of the methodologies used to solve the unit commitment problem.

In this section we perform a test where we solve eight instances of the dual problem associated to the Unit Commitment problem with duplicated variables (9), introduced in Ref. 23,

\[
\min \quad f(x, \tilde{x}) = C_{ht}(x) + C_{m}(\tilde{x}), \\
\text{s.t.} \quad x \in D_{ht}, \\
\quad \tilde{x} \in D_{m}, \\
\quad x - \tilde{x} = 0,
\]

where \(D_{ht}\) represents the domain defined by the constraints that couple the hydroelectric and thermal systems: load constraints, spinning reserve constraints, etc., \(D_{m}\) represents the domain of the management for the thermal units: minimum up and down times, minimum and maximum output levels, etc., \(C_{ht}(x)\) represents the costs associated with \(D_{ht}\) and \(C_{m}(x)\) represents the costs associated with \(D_{m}\). The complete description of this model can be found in Ref. 24, chapter 2.

The dual problem that we solve corresponds to the relaxation of the equality constraint (9d), that is,

\[
\max_{\lambda \in \mathbb{R}^M} \left\{ \min \quad C_{ht}(x) + C_{m}(\tilde{x}) + \lambda'(x - \tilde{x}) \right\}
\]

s.t. \(x \in D_{ht}\), \(\tilde{x} \in D_{m}\),

where \(M\), the dimension of \(\lambda\), is the product of the number of thermal units by the number of intervals.

In Table 1 we describe eight unit commitment instances, the main features of which range from very small size (2 intervals, 0 reservoirs, 2 thermal units, and 4 binary variables) up to medium size (168 intervals, 4 reservoirs, 11 thermal units, and 1848 binary variables).
Table 1: Description of the unit commitment instances.

<table>
<thead>
<tr>
<th>Case</th>
<th>Number intervals</th>
<th>Number reservoirs</th>
<th>Thermal units</th>
<th>Continuous variables</th>
<th>Binary variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
<td>4</td>
<td>138</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>48</td>
<td>2</td>
<td>4</td>
<td>1104</td>
<td>192</td>
</tr>
<tr>
<td>4</td>
<td>48</td>
<td>4</td>
<td>7</td>
<td>1920</td>
<td>336</td>
</tr>
<tr>
<td>5</td>
<td>48</td>
<td>2</td>
<td>7</td>
<td>1680</td>
<td>336</td>
</tr>
<tr>
<td>6</td>
<td>168</td>
<td>4</td>
<td>2</td>
<td>3360</td>
<td>336</td>
</tr>
<tr>
<td>7</td>
<td>168</td>
<td>4</td>
<td>7</td>
<td>6720</td>
<td>1176</td>
</tr>
<tr>
<td>8</td>
<td>168</td>
<td>4</td>
<td>11</td>
<td>9408</td>
<td>1848</td>
</tr>
</tbody>
</table>

This test consists of two steps: Step 1), we solve the dual (10) for each unit commitment instance using both the subgradient method and the radar subgradient method, to compare the quality of the computed optima. Step 2), we compare the efficiency of the subgradient and radar subgradient methods in terms of CPU time.

Within the subgradient method we use the Polyak step defined by
\[
\beta_n = \alpha_n (\hat{q}_n - q_n) / \|s_n\|^2, \quad \text{where } \alpha_n = \frac{\alpha_0}{n} \quad (n > 0), \quad q_n = q(\lambda_n) \quad \text{and } s_n \in \partial q(\lambda_n).
\]

Based on Ref. 1, \(\hat{q}_n\), an approximation to the optimum \(q^*\), is chosen as
\[
\hat{q}_n = (1 + \delta_n) \cdot \max_{i=1,...,n} \{q_i\},
\]

where \(\delta_n\) is updated at each iteration as

\[
\delta_{n+1} = \begin{cases}
\min \{ \max \{ \hat{\delta}, \delta_n \cdot \Delta \delta \}, \overline{\delta} \} & \text{if } q_n > q_{n-1}, \\
\min \{ \max \{ \hat{\delta}, \delta_n / \Delta \delta \}, \overline{\delta} \} & \text{if } q_n \leq q_{n-1},
\end{cases}
\]

\(\Delta \delta\) being a constant factor. \(\hat{\delta}\) and \(\overline{\delta}\) are, respectively, a lower and upper bound to \(\delta_n\), i.e. \(\delta_n \in [\hat{\delta}, \overline{\delta}]\) for all \(n\).

The stopping criterion used by both the subgradient and the radar subgradient algorithms is

\[
\sum_{i=0}^{4} \|\lambda_{n-i} - \lambda_{n-i-1}\|_\infty < \epsilon_\lambda,
\]

i.e. both the subgradient and the radar subgradient methods stop whenever the average variation of \(\lambda_n\) for the last 5 iterations is small enough. We use \(\epsilon_\lambda = 10^{-5}\) and a maximum number of multiplier updates equal to 1000 for both the subgradient and the radar step method. The value of the parameter \(\alpha_0\) used in the radar subgradient method...
Table 2: Results using the radar subgradient (RS) versus the subgradient (SG) method.

<table>
<thead>
<tr>
<th>Case</th>
<th>Iterations</th>
<th>CPU time (seconds)</th>
<th>Best dual cost (q^*) ($\times 10^6$ PTA)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SG</td>
<td>SG</td>
</tr>
<tr>
<td>1</td>
<td>43</td>
<td>17.6</td>
<td>9.51</td>
</tr>
<tr>
<td>2</td>
<td>1000</td>
<td>297.2</td>
<td>9.40</td>
</tr>
<tr>
<td>3</td>
<td>774</td>
<td>418.3</td>
<td>17.6</td>
</tr>
<tr>
<td>4</td>
<td>1000</td>
<td>632.0</td>
<td>81.8</td>
</tr>
<tr>
<td>5</td>
<td>665</td>
<td>390.2</td>
<td>16.5</td>
</tr>
<tr>
<td>6</td>
<td>580</td>
<td>555.9</td>
<td>156.5</td>
</tr>
<tr>
<td>7</td>
<td>941</td>
<td>3975.4</td>
<td>497.3</td>
</tr>
<tr>
<td>8</td>
<td>820</td>
<td>203872.9</td>
<td>17454.4</td>
</tr>
<tr>
<td>Average</td>
<td>727.9</td>
<td>26269.9</td>
<td>2280.4</td>
</tr>
</tbody>
</table>

An important difference between these two methods is the tuning process. The classical subgradient method with Polyak step, as we have implemented it, depends on parameters α_0, $\Delta \delta$, δ and $\bar{\delta}$, which may need a demanding tuning as it has been in this test. On the contrary, the radar subgradient method only depends on parameter α_0, which is very easy to tune. This is because, usually, the radar subgradient method only uses α_0 in the first iterations, when the approximation to the dual function is still too poor to compute the radar step.

Results of step 1): As can be appreciated in Table 2 the quality of the computed dual optima is very similar for the two methods. In general the subgradient methods obtains slightly better results, that is, on average the subgradient optima are 1.1% better than the radar subgradient optima.

Results of step 2): To compare the efficiency of the two methods we compute the CPU time ratio for each case, which on average is 13.97. Thus, we can say that in this test, on average, the subgradient method and the radar subgradient method have obtained similar dual bounds. Also on average, the radar subgradient time is less than nearly 1/14 of the time required by the subgradient method. Once again it should be stressed that the number of iterations is not a good measure to compare the two methods. In this case, on average, the number of subgradient iterations is 26 times the number of radar subgradient iterations. However, the actual CPU time ratio is 13.97.
Table 3: Comparison of the radar subgradient (RS) with the truncated subgradient (TSG) method.

<table>
<thead>
<tr>
<th>Case</th>
<th>Iter.</th>
<th>CPU time (seconds)</th>
<th>Best dual cost (q^*) ($\times 10^6$ PTA)</th>
<th>Relative dual error ($q^_SG - q^$)/q^*_SG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TSG</td>
<td>TSG/RS</td>
<td>TSG</td>
<td>TSG</td>
</tr>
<tr>
<td>1</td>
<td>22</td>
<td>10.0</td>
<td>0.00373</td>
<td>0.002%</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>9.9</td>
<td>5.91992</td>
<td>1.221%</td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td>18.3</td>
<td>0.94358</td>
<td>2.763%</td>
</tr>
<tr>
<td>4</td>
<td>37</td>
<td>33.5</td>
<td>6.05337</td>
<td>4.717%</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>22.1</td>
<td>0.96279</td>
<td>4.620%</td>
</tr>
<tr>
<td>6</td>
<td>25</td>
<td>107.3</td>
<td>4.38704</td>
<td>0.955%</td>
</tr>
<tr>
<td>7</td>
<td>28</td>
<td>806.4</td>
<td>2.44635</td>
<td>3.507%</td>
</tr>
<tr>
<td>8</td>
<td>40</td>
<td>21635.4</td>
<td>85.42933</td>
<td>0.292%</td>
</tr>
<tr>
<td>Average</td>
<td>2830.4</td>
<td>2280.4</td>
<td>13.26826</td>
<td>2.342%</td>
</tr>
</tbody>
</table>

In Table 2 we can observe that the radar subgradient method obtains dual costs slightly worse than the subgradient method. Even if we impose a more strict stopping parameter ϵ_λ, the final radar subgradient dual cost does not improve. This illustrates the fact that the radar subgradient method may converge to a suboptimal point and therefore no convergence proof can be envisaged. Nevertheless, this computational analysis shows that the radar subgradient method can give a good approximation to the optimal dual function in much less time than the subgradient method.

Another interesting experiment would be to compare the radar subgradient solutions with the solutions obtained by the subgradient method after the same number of iterations. Table 3 presents the same information shown in Table 2, but truncating the subgradient method at the iteration where the radar subgradient reaches its best solution. Looking at the results in this table, it appears that the radar subgradient method approaches, in general, faster to a good estimation of the optimal dual function than the truncated subgradient method. While the times spent by both methods are similar (average CPU time ratio of 1.055), the average of the relative dual error ($q^*_SG - q^*$)/q^*_SG, which measures the difference between the current solution q^* and q^*_SG, the solution found by the subgradient method in Table 2, is reduced by the radar subgradient method by a factor greater than 2 (see the last two columns of Table 3). Figure 3 illustrates graphically this improvement of the dual function value for instance 7 of this computational test.
4 Conclusions

In this paper, we have introduced the radar subgradient method. The philosophy of the radar subgradient method is to incorporate into the subgradient method the first order information about the dual function already exploited by the cutting-plane method. The cutting-plane method directly maximizes the successive approximations to the dual function, whereas the radar subgradient method uses these approximations in order to compute an effective steplength following the subgradient direction. Thus, the tuning of the steplength sequence of the subgradient method is avoided while the subgradient low computational burden is maintained.

In the tests we carried out, based on the unit commitment problem, the new radar subgradient method outperformed the classical subgradient method from a practical point of view: the subgradient method obtained slightly better dual optima than the radar subgradient method, but on average the radar subgradient method reduced the execution CPU time by a factor of 14. That is, the radar subgradient method approaches the optimal set in a considerably faster way than the subgradient method.

Therefore, even if the radar subgradient method, in general will only give a good approximation to the optimum, we can use it to efficiently approach the optimal set. For some applications this will be enough. For other applications, we will need to continue the optimization process by a more sophisticated method (bundle method for example) to achieve convergence to the optimum.
References

