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Abstract

One of the main drawbacks of the subgradient method is the tun-
ing process to determine the sequence of steplengths. In this paper,
the radar subgradient method, a heuristic method designed to compute
a tuning-free subgradient steplength, is geometrically motivated and
algebraically deduced. The unit commitment problem, which arises
in the electrical engineering field, is used to compare the performance
of the subgradient method with the new radar subgradient method.
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ent method, radar subgradient method, unit commitment.

1 Introduction

The objective of this paper is to improve the subgradient method which is used to solve
nondifferentiable optimization problems as for example the Lagrangian dual problem.
One of the main drawbacks of the subgradient method is the tuning process to determine
the sequence of steplengths to update successive iterates. To avoid this, we propose
the radar subgradient method, a heuristic method designed to compute a tuning-free
subgradient steplength.
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It is well known that the dual function is a concave function over its domain (regard-
less of the structure of the cost and constraints of the primal problem), but not neces-
sarily differentiable (Ref. 1, chapter 5). If there is no duality gap, that is, if the optimal
values of the primal problem and the dual problem are equal, then a solution of the dual
problem provides a solution of the primal problem. We solve the dual problem when-
ever it is easier to solve than the primal problem and there is no duality gap. However,
even if there is a duality gap the solution of the dual problem provides a lower bound
to the primal optimum that can be useful, for example, in combinatorial optimization.
Further details can be found in Ref. 1, 2 and a more in-depth theoretical point of view
in Ref. 3.

There are two main methods to maximize the dual function (Ref. 1, 3): the subgra-
dient method and the cutting-plane method (although we could call them families of
methods since each method has its own variants).

First, in the subgradient method, the Lagrangian multipliersλn (dual variables) are
updated asλn+1 = λn + αn · sn/‖sn‖, where,sn is a subgradient of the dual function
at the current iterateλn. In this case, iflimn→∞ αn = 0 and

∑∞
n=0 αn = +∞, conver-

gence is guaranteed (Ref. 4). If the dual function is non-differentiable, the subgradient
method may progress slowly to the optimum in an oscillating fashion.

The steplengthαn is usually chosen asαn = 1/(a + bn) (basic rule), or more often
asαn = βn(q̂n − q(λn))/‖sn‖ (Polyak II rule), whereq(λn) is the dual function at the
current iterate,̂qn is an upper bound to the dual optimum andβn ∈]0, 2[ (Ref. 1). A
less common choice isαn = abn, which may yield a geometric rate of convergence if
parametersa andb are carefully selected, but without guaranteed convergence (Ref. 5,
page 9). Thus, another drawback of the subgradient method is the non-trivial tuning
parameter associated with some of the available choices forαn.

Second, in the Kelley’s cutting-plane method (Ref. 6), the new iterate is obtained
by maximizing an outer approximation of the dual function, given by a collection of
cutting-planes (hyperplanes). Unlike the subgradient method, the cutting-plane method
does not suffer from oscillations, and proper stopping criteria can be used, but the com-
putational burden can be high depending on the implementation. The dynamically con-
strained cutting-plane method avoids this high computational burden by limiting the
number of approximating hyperplanes (Ref. 2).

The pure cutting-plane method usually gives a slow and unstable performance, espe-
cially around the optimum (Ref. 7). To overcome this unstability, the cutting-plane
method is often used in augmented form (bundle method, Ref. 3, 7–10), where a
quadratic penalty is appended to the objective function.

The newest version of the cutting-plane method is the Analytical Center Cutting-
Plane method (ACCPM) (Ref. 11, 12). Roughly speaking, at each iteration, ACCPM
searches for the analytical center of the polyhedron associated to the outer approxima-
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tion of the dual function given by the cutting-planes. The sophisticated ACCPM code
has proved to be efficient and robust (Ref. 13).

In spite of the drawbacks of the subgradient method, it is still a popular method since
it is very simple to implement, and because of its small computational burden. Further-
more, although the theoretical rate of convergence for pure subgradient algorithms is at
best linear (Ref. 14), experience shows that their practical efficiency is good, especially
for large scale, structured optimization problems.

For this reason, the subgradient method is still a subject of active research. Thus,
for example, in Ref. 15 faster initial convergence of the subgradient method is achieved
using exponentially weighted subgradients. The volume algorithm (Ref. 16), derived
from the subgradient method, has a much better stopping criterion compared to the ba-
sic subgradient method. Another variant of the subgradient method, the incremental
subgradient method, results in a much better practical rate of convergence than the sub-
gradient method (Ref. 17). The ball-step subgradient level method can be surprisingly
effective when low solution accuracy is acceptable, as happens in many applications
(Ref. 18).

The paper is divided into four sections. In this first section we have given a short
introduction to the subgradient and cutting-plane methods. In the second section an
effective steplength for the subgradient method is geometrically motivated and alge-
braically described. In the third section, a set of instances of the well known unit com-
mitment problem are used to compare the efficiency of the basic subgradient with the
new method. Conclusions are given in the fourth section.

1.1 Notation

Let us suppose we wish to solve the following primal problem (P):

min f(x), (1a)

s.t. h(x) = 0, (1b)

x ∈ D, (1c)

wheref(x) : Rn 7−→ R and h(x) : Rn 7−→ Rm, andD is a nonempty compact set
in Rn.

As usual, the (Lagrangian) dual problem (D) of (P) is

max
λ ∈ Rm

{
min f(x) + λ′h(x)

x ∈ D

}
. (2)

Equivalently, with the Lagrangian functionL(x, λ) := f(x) + λ′h(x), the dual prob-
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lem can be written as

max
λ ∈ Rm

{
min L(x, λ)

x ∈ D

}
. (3)

For short, defining the dual function

q(λ) := min {L(x, λ) : x ∈ D} , (4)

the dual problem has the expression

max
λ ∈ Rm

q(λ).
(5)

Other symbols used through the paper are:

n iteration index.

{αn} sequence of positive scalars (for example a subgradient steplength sequence).

λn Lagrange multiplier vector at iterationn.

qn := q(λn).

∂q(λn) subdifferential ofq atλn. ∂q(λn) = {s ∈ Rm : q(λ) ≤ q(λn)+s′(λ−λn)}.

sn subgradient ofq atλn. That is,sn ∈ ∂q(λn).

zn(λ) : Rm 7−→ R, affine function defined aszn(λ) = qn + s′n(λ− λn).

SPn := {
(

λ
z

)
∈ Rm×R : z = zn(λ)}, supporting plane ofq(λ) atλn (associated

to sn), i.e. zn(λn) = qn andzn(λ) ≥ q(λ), for all λ ∈ Rm.

2 Radar Subgradient Method

2.1 Motivation

On the one hand, the cutting-plane method, unlike the subgradient method, takes ad-
vantage of the first order information generated each timeL(x, λ) is minimized. Given
thath(xn) is a subgradient ofq(λn), eventually, the cutting-plane method builds up an
accurate first order approximation of the dual functionq(λ). Then, instead of tuning a
sequence of steplengths, as in the subgradient method, the cutting-plane method works
upon an increasingly accurate knowledge of the dual function.
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On the other hand, the subgradient method, unlike the cutting-plane method, takes
advantage of the subgradient direction generated each timeL(x, λ) is minimized, that
is, the subgradient method converges to an optimal point usingh(xn) ∈ ∂q(λn).

Although h(xn) may not be an ascent direction, it determines a new iterate closer
to an optimizer if a suitable steplength is taken (Ref. 1, chapter 6). Furthermore,
considering that the dual function is the lower envelope of a set of affine functions
ϕx(λ) := f(x) + λ′h(x), very often the dual function will not be smooth at the optimal
points, but in many other points it will be smooth, that is,h(xn) will be the steepest as-
cent direction∇q(λn). All in all, in many iterations the subgradienth(xn) should be an
effective direction if complemented with a careful choice of steplength. Consequently,
it seems promising to try to avoid the steplength tuning of the subgradient method by
incorporating the first order information about the dual functionq(λ) exploited by the
cutting-plane method, while saving the low computational burden of the subgradient
method. This is the philosophy of the radar subgradient method presented herein.

The objective of the radar subgradient method is to maximize any concave function
q(λ) without constraints, as it is the case of the unconstrained dual problem (5). This
method uses the same information as the cutting-plane method but in a different way.
The supporting planes obtained in the course of the optimization give a first order ap-
proximation ofq(λ). The cutting-plane method directly maximizes the function induced
by the successive approximations ofq(λ), whereas the radar subgradient method uses
the approximation toq(λ) in order to compute the steplength along the subgradient di-
rection. We used this idea to develop the radar gradient method (Ref. 19) within the
framework of augmented Lagrangian relaxation, whose dual function is differentiable.
The radar gradient method was compared to the multiplier method from a practical point
of view and the performance of the two methods was similar.

Another multiplier updating method that shares the same philosophy (subgradient
plus cutting-planes) can be found in Ref. 20, although it is based on the bundle method
rather than the basic cutting-plane method and the resulting updating procedure is dif-
ferent from the one we propose.

2.2 Geometry and Algebra

To derive the radar subgradient method we distinguish three cases:

Case 1: Radar Steplength

The basic geometrical intuition of the radar steplength is displayed in Figure 1.
Please note that we use a one-dimensionalq(λ) to introduce the radar subgradient
method. The central idea of the radar subgradient method is to perform a line search
along the subgradient direction by using the first order approximation toq(λ). In
the optimization process ofq(λ) we obtain function valuesqk and subgradientssk of
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q(λ), k = 1, . . . , n, which allow as to build the supporting planesSP1, . . . , SPn. The
lower envelope of these supporting planes gives a first order approximation ofq(λ). To
simplify, in this one-dimensional example, we assume the first order approximation to
q(λ) is based on three supporting planesSPn, SPn−1 andSPn−2. In this case, to com-
pute the steplength fromλn to λn+1, first, we compute the pointspn−1 := SPn ∩SPn−1

andpn−2 := SPn ∩ SPn−2. Second, we projectpn−1 andpn−2 on the subgradient direc-
tion obtainingqn−1 := proj(pn−1) andqn−2 := proj(pn−2). Third,λn+1 is defined as the
closest projection toλn, that is,qn−2.

Arbitrarily enough, we call the previous procedure the radar subgradient method con-
sidering that, as we can see in Figure 1, the method detects the first supporting plane
that would be detected by a radar station pointing in the direction given bySPn. Natu-
rally, the radar steplength will refer to the steplength associated to the radar subgradient
method.

In the following proposition we show how to compute the radar steplengthβn. Note
that, unlike in the bundle method or in the cutting-plane method, we update the vector
of multipliersλn without solving any optimization problem.

Let us consider:

Λn(β) : R 7−→ Rm, vector-valued mapping defined asΛn(β) = λn + βsn.

Rn := {Λn(β) ∈ Rm : β ∈ R}, straight line of candidates toλn+1.

yn,k(β) : R 7−→ R, affine function defined asyn,k(β) = qk + s′k(Λn(β) − λk),
(k = 0, . . . , n).

rn,k := {
(

β
y

)
∈ R × R : y = yn,k(β)}, straight line defined onSPk whenλ

moves alongRn, (k = 0, . . . , n).

(βn,k, ŷn,k) ∈ R×R, intersection point of the straight linesrn,k andrn,n, (k = 0, . . . , n−
1).

βn steplength fromλn to λn+1 given by the radar subgradient method, i.e.
λn+1 = λn + βnsn.

Ωn set of the positive steps fromλn, i.e. Ωn := {βn,k : βn,k > 0, k =
0, . . . , n− 1}.

Proposition 2.1If q(λ) : Rm 7−→ R is a concave function then:

(a) If (sn − sk)
′sn = 0 thenrn,n is parallel torn,k and therefore one should not

computeβn,k.
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(b) If (sn − sk)
′sn 6= 0 thenrn,n is not parallel torn,k and

βn,k =
qk − qn + (λn − λk)

′sk

(sn − sk)′sn

k = 0, . . . , n− 1. (6)

(c) If Ωn 6= ∅, the radar steplength can be computed as

βn = min Ωn. (7)

Proof.

(a) If (sn − sk)
′sn = 0 thens′nsn = s′ksn which means, as we will see in Proposi-

tion 2.2, that the straight linesrn,n andrn,n have the same slope, that is,rn,n andrn,n

are parallel and it does not make sense to computeβn,k.

(b) Analogously to case (a), we have thatrn,n and rn,n have different slopes and
therefore it makes sense to computeβn,k, which can be computed as follows. By defi-
nition

Λn(β) = λn + βsn,

yn,n(β) = qn + s′n(Λn(β)− λn),

yn,k(β) = qk + s′k(Λn(β)− λk).

Then
yn,n(β) = qn + s′n(λn + βsn − λn)

= qn + s′nβsn,

yn,k(β) = qk + s′k(λn + βsn − λk).

At the intersection point ofrn,n andrn,k it happens thatyn,n(β) = yn,k(β), hence

qn + s′nβsn = qk + s′k(λn + βsn − λk),

qn + βs′nsn = qk + s′k(λn − λk) + βs′nsk,

β(sn − sk)
′sn = qk − qn + (λn − λk)

′sk.

Therefore, the intersection point(βn,k, ŷn,k) is defined by the step

βn,k =
qk − qn + (λn − λk)

′sk

(sn − sk)′sn

, k = 0, . . . , n− 1.

(c) Given that the aim of the radar subgradient method is to maximizeq(λ) following
the subgradient direction, only positive length stepsβn,k (k = 0, . . . , n − 1) will be
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taken. We wish to stop with the first intersection point among the points{(βn,k, ŷn,k) :
k = 0, . . . , n− 1}, thus the minimum positiveβn,k must be chosen. Thus

βn = min{βn,k : βn,k > 0, k = 0, . . . , n− 1} = min Ωn.

2

Case 2: Positive and Negative Planes

In Figure 2 we repeat the computation of a radar step for the one-dimensional exam-
ple, i.e. we compute the intersection of all the supporting planes withSPn, we project
these intersections on the subgradient direction and we takeλn+1 as the closest projec-
tion to λn. Now the difference is that we do not take into accountSPn−1 because its
slope has the same sign as the slope ofSPn. Our intuition is that taking into account
supporting planes with the slope sign ofSPn would stop the radar subgradient progress
prematurely. This intuition has been confirmed by preliminary computational tests.

Let us definemn,k as the slope of the straight linern,k k = 0, . . . , n. Next proposition
shows how to computemn,k.

Proposition 2.2Let q(λ) : Rm 7−→ R be a concave function and let us follow the
notation of the above proposition. The slope of the straight linern,k, k = 0, . . . , n, can
be computed as:

mn,k = s′nsk. (8)

Proof. The straight linern,k is defined by the affine functionyn,k(β) = qk+s′k(Λn(β)−
λk). Let us expressyn,k(β) asbk + mn,kβ.

yn,k(β) = qk + s′k(Λn(β)− λk)

= qk + s′k(λn + βsn − λk)

= qk + s′k(λn − λk) + s′nskβ,

whencebk = qk + s′k(λn − λk) andmn,k = s′nsk, as we wanted to prove. 2

Inspired by Figure 2 and the above proposition, we say that the supporting planeSPk

defined by the point(λk, qk) and the subgradientsk (k < n) is apositive plane relative
to λn if rn,k has a positive slope, that is, ifmn,k > 0. If mn,k is not greater than zero, we
say thatSPk is anegative plane relative to λn.

Case 3: Lack of negative planes

If the first order approximation ofq(λ) along the subgradient direction is based only
on a set of positive planes, i.e.Ωn = ∅, then the radar steplength fromλn to λn+1 cannot
be computed and arbitrarily we take a classical subgradient steplength instead.
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2.3 Algorithm

Joining the three cases discussed in the the above section the radar subgradient algorithm
can be displayed as:

Radar Subgradient Algorithm

Step 0 Initialize. Setn = 0, λ0 andNiter.

Step 1 Computeq(λn). Computeqn andsn ∈ ∂q(λn). Storesn, qn andλn.

Step 2 Check the stopping criterion. Ifλn does not improve for the lastNiter itera-
tions orn reaches a prefixed value then stop.

Step 3 Compute the step length.

– Computemn,n := s′nsn.

– Fork = 0, . . . , n− 1:

∗ Computemn,k := s′nsk.
∗ If mn,k > 0 reject the positive planeSPk by settingβn,k := −1.

Otherwise, ifmn,n −mn,k 6= 0, compute

βn,k :=
qk − qn + (λn − λk)

′sk

mn,n −mn,k

.

There are two cases depending on

Ωn := {βn,k : βn,k > 0, k = 0, . . . , n− 1} :

a) If Ωn 6= ∅, then setβn := min Ωn.

b) If Ωn = ∅, then setβn := αn , for a prefixed sequence{αn}.

Step 4 Computeλn+1 = λn + βnsn. Setn = n + 1 and go back to step 1.

In our implementation of the radar subgradient algorithm we use sequences{αn} such
that limn→∞ αn = 0 and

∑∞
n=0 αn = +∞ (classical subgradient step length se-

quences). Furthermore, good computational results are obtained using pure classical
subgradient steps for the first, say, 10 iterations, that is,βn = αn for n = 1, 2, . . . , 10.

Note that in step 2 the radar subgradient method inherits the typical stopping criterion
used by the classical subgradient method. In spite of its generalized use, with this
criterion we cannot ensure the dual optimality of the best computed point. Nevertheless,
in many applications the accuracy obtained using this stopping criterion will suffice. For
example, this is the case of the dual bound computing in combinatorial optimization.
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3 Numerical results

The objective of this section is to compare the performance of the subgradient method
with the radar subgradient method. The two methods are compared by using a set of
large-scale unit commitment instances. The aim of the unit commitment problem is to
optimize electricity production, considering a short-term planning horizon (from one
day to one week). Hydroelectric and thermal plants must be coordinated in order to
satisfy the customer demand for electricity at minimum cost and with a reliable service.
Some examples of unit commitment literature are Ref. 19, 21, 22. The unit commitment
problem decides, for each subperiod of the planning horizon, when a thermal unit is on
or off, that is, when it is producing electricity and when it is shut down. These on/off
decisions are of a binary nature and turn the unit commitment problem into a difficult
mixed integer programming problem. Solving the associated dual problem is a key point
for most of the methodologies used to solve the unit commitment problem.

In this section we perform a test where we solve eight instances of the dual problem
associated to the Unit Commitment problem with duplicated variables (9), introduced
in Ref. 23,

min f(x, x̃) = Cht(x) + Cm(x̃), (9a)

s.t. x ∈ Dht, (9b)

x̃ ∈ Dm, (9c)

x− x̃ = 0, (9d)

whereDht represents the domain defined by the constraints that couple the hydroelectric
and thermal systems: load constraints, spinning reserve constraints, etc.,Dm represents
the domain of the management for the thermal units: minimum up and down times,
minimum and maximum output levels, etc.,Cht(x) represents the costs associated with
Dht andCm(x) represents the costs associated withDm. The complete description of
this model can be found in Ref. 24, chapter 2.

The dual problem that we solve corresponds to the relaxation of the equality constraint
(9d), that is,

max
λ∈RM


min Cht(x) + Cm(x̃) + λ′(x− x̃),
s.t. x ∈ Dht,

x̃ ∈ Dm,

 (10)

whereM , the dimension ofλ, is the product of the number of thermal units by the
number of intervals.

In Table 1 we describe eight unit commitment instances, the main features of which
range from very small size (2 intervals, 0 reservoirs, 2 thermal units, and 4 binary vari-
ables) up to medium size (168 intervals, 4 reservoirs, 11 thermal units, and 1848 binary
variables).
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Table 1: Description of the unit commitment instances.

Case Number Number Thermal Continuous Binary
intervals reservoirs units variables variables

1 2 0 2 16 4
2 6 2 4 138 24
3 48 2 4 1104 192
4 48 4 7 1920 336
5 48 2 7 1680 336
6 168 4 2 3360 336
7 168 4 7 6720 1176
8 168 4 11 9408 1848

This test consists of two steps: Step 1), we solve the dual (10) for each unit commit-
ment instance using both the subgradient method and the radar subgradient method, to
compare the quality of the computed optima. Step 2), we compare the efficiency of the
subgradient and radar subgradient methods in terms of CPU time.

Within the subgradient method we use the Polyak step defined byβn = αn(q̂n −
qn)/‖sn‖2, whereαn = α0/n (n > 0), qn = q(λn) and sn ∈ ∂q(λn). Based on
Ref. 1,q̂n, an approximation to the optimumq∗, is chosen as

q̂n = (1 + δn) · max
i=1,...,n

{qi},

whereδn is updated at each iteration as

δn+1 =


min{max{δ, δn · 4δ}, δ} if qn > qn−1,

min{max{δ, δn/4δ}, δ} if qn ≤ qn−1,
(11)

4δ being a constant factor.δ andδ are, respectively, a lower and upper bound toδn, i.e.
δn ∈ [δ, δ] for all n.

The stopping criterion used by both the subgradient and the radar subgradient algorithms
is ∑4

i=0 ‖λn−i − λn−i−1‖∞
5

< ελ, (12)

i.e. both the subgradient and the radar subgradient methods stop whenever the average
variation of λn for the last 5 iterations is small enough. We useελ = 10−5 and a
maximum number of multiplier updates equal to 1000 for both the subgradient and the
radar step method. The value of the parameterα0 used in the radar subgradient method

12



Table 2: Results using the radar subgradient (RS) versus the subgradient (SG) method.

Case Iterations CPU time Best dual cost(q∗)
(seconds) (×106 PTA)

SG RS SG RS Ratio SG RS
1 43 22 17.6 9.51 1.85 0.00374 0.00373
2 1000 30 297.2 9.40 31.61 5.99310 5.82620
3 774 25 418.3 17.6 23.76 0.97040 0.96149
4 1000 37 632.0 81.8 7.72 6.35305 6.32430
5 665 18 390.2 16.5 23.64 1.00943 1.00387
6 580 25 555.9 156.5 3.55 4.42936 4.28276
7 941 28 3975.4 497.3 7.99 2.53527 2.53023
8 820 40 203872.9 17454.4 11.68 85.67975 84.86457

Average 727.9 28.1 26269.9 2280.4 13.97 13.37 13.22

to set the first 10 steps is10−3 for all cases except for cases 1 and 2 where we have
used100. The best parameters we have found for the Polyak step (11), after extensive
computational tests, are:α0 = 5, δ0 = 0.5, 4δ = 1.5, δ = 0.1, δ = 0.5 for all eight
cases.

An important difference between these two methods is the tuning process. The classical
subgradient method with Polyak step, as we have implemented it, depends on parame-
tersα0,4δ, δ andδ, which may need a demanding tuning as it has been in this test. On
the contrary, the radar subgradient method only depends on parameterα0, which is very
easy to tune. This is because, usually, the radar subgradient method only usesα0 in the
first iterations, when the approximation to the dual function is still too poor to compute
the radar step.

Results of step 1): As can be appreciated in Table 2 the quality of the computed dual
optima is very similar for the two methods. In general the subgradient methods obtains
slightly better results, that is, on average the subgradient optima are 1.1% better than
the radar subgradient optima.

Results of step 2): To compare the efficiency of the two methods we compute the CPU
time ratio for each case, which on average is 13.97. Thus, we can say that in this test,
on average, the subgradient method and the radar subgradient method have obtained
similar dual bounds. Also on average, the radar subgradient time is less than nearly
1/14 of the time required by the subgradient method. Once again it should be stressed
that the number of iterations is not a good measure to compare the two methods. In this
case, on average, the number of subgradient iterations is 26 times the number of radar
subgradient iterations. However, the actual CPU time ratio is 13.97.
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Table 3: Comparison of the radar subgradient (RS) with the truncated subgradient (TSG)
method.

Case Iter. CPU time Best dual cost (q∗) Relative dual error
(seconds) (×106 PTA) (q∗SG − q∗)/q∗SG

TSG Ratio
and RS TSG RS TSG/RS TSG RS TSG RS

1 22 10.0 9.51 1.051 0.00373 0.00373 0.002% 0.235%
2 30 9.9 9.40 1.053 5.91992 5.8262 1.221% 2.784%
3 25 18.3 17.6 1.039 0.94358 0.96149 2.763% 0.918%
4 37 33.5 81.8 0.409 6.05337 6.32430 4.717% 0.452%
5 18 22.1 16.5 1.339 0.96279 1.00387 4.620% 0.550%
6 25 107.3 156.5 0.685 4.38704 4.28276 0.955% 3.309%
7 28 806.4 497.3 1.621 2.44635 2.53023 3.507% 0.198%
8 40 21635.4 17454.4 1.239 85.42933 84.86457 0.292% 0.951%

Average 2830.4 2280.4 1.055 13.26826 13.22590 2.342% 1.017%

In Table 2 we can observe that the radar subgradient method obtains dual costs slightly
worse than the subgradient method. Even if we impose a more strict stopping param-
eterελ, the final radar subgradient dual cost does not improve. This illustrates the fact
that the radar subgradient method may converge to a suboptimal point and therefore no
convergence proof can be envisaged. Nevertheless, this computational analysis shows
that the radar subgradient method can give a good approximation to the optimal dual
function in much less time than the the subgradient method.

Another interesting experiment would be to compare the radar subgradient solutions
with the solutions obtained by the subgradient method after the same number of iter-
ations. Table 3 presents the same information shown in Table 2, but truncating the
subgradient method at the iteration where the radar subgradient reaches its best solu-
tion. Looking at the results in this table, it appears that the radar subgradient method
approaches, in general, faster to a good estimation of the optimal dual function than
the truncated subgradient method. While the times spent by both methods are similar
(average CPU time ratio of 1.055), the average of the relative dual error(q∗SG−q∗)/q∗SG,
which measures the difference between the current solutionq∗ and q∗SG, the solution
found by the subgradient method in Table 2, is reduced by the radar subgradient method
by a factor greater than 2 (see the last two columns of Table 3). Figure 3 illustrates
graphically this improvement of the dual function value for instance 7 of this computa-
tional test.
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Figure 3: Dual function evolution (case 7 of the test)

4 Conclusions

In this paper, we have introduced the radar subgradient method. The philosophy of
the radar subgradient method is to incorporate into the subgradient method the first
order information about the dual function already exploited by the cutting-plane method.
The cutting-plane method directly maximizes the successive approximations to the dual
function, whereas the radar subgradient method uses these approximations in order to
compute an effective steplength following the subgradient direction. Thus, the tuning
of the steplength sequence of the subgradient method is avoided while the subgradient
low computational burden is maintained.

In the tests we carried out, based on the unit commitment problem, the new radar sub-
gradient method outperformed the classical subgradient method from a practical point
of view: the subgradient method obtained slightly better dual optima than the radar
subgradient method, but on average the radar subgradient method reduced the execu-
tion CPU time by a factor of 14. That is, the radar subgradient method approaches the
optimal set in a considerably faster way than the subgradient method.

Therefore, even if the radar subgradient method, in general will only give a good ap-
proximation to the optimum, we can use it to efficiently approach the optimal set. For
some applications this will be enough. For other applications, we will need to continue
the optimization process by a more sophisticated method (bundle method for example)
to achieve convergence to the optimum.
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